Unknown

Dataset Information

0

Proximity-dependent labeling methods for proteomic profiling in living cells.


ABSTRACT: Characterizing the proteome composition of organelles and subcellular regions of living cells can facilitate the understanding of cellular organization as well as protein interactome networks. Proximity labeling-based methods coupled with mass spectrometry (MS) offer a high-throughput approach for systematic analysis of spatially restricted proteomes. Proximity labeling utilizes enzymes that generate reactive radicals to covalently tag neighboring proteins with biotin. The biotinylated endogenous proteins can then be isolated for further analysis by MS. To analyze protein-protein interactions or identify components that localize to discrete subcellular compartments, spatial expression is achieved by fusing the enzyme to specific proteins or signal peptides that target to particular subcellular regions. Although these technologies have only been introduced recently, they have already provided deep insights into a wide range of biological processes. Here, we describe and compare current methods of proximity labeling as well as their applications. As each method has its own unique features, the goal of this review is to describe how different proximity labeling methods can be used to answer different biological questions. WIREs Dev Biol 2017, 6:e272. doi: 10.1002/wdev.272 For further resources related to this article, please visit the WIREs website.

SUBMITTER: Chen CL 

PROVIDER: S-EPMC5553119 | biostudies-literature | 2017 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Proximity-dependent labeling methods for proteomic profiling in living cells.

Chen Chiao-Lin CL   Perrimon Norbert N  

Wiley interdisciplinary reviews. Developmental biology 20170407 4


Characterizing the proteome composition of organelles and subcellular regions of living cells can facilitate the understanding of cellular organization as well as protein interactome networks. Proximity labeling-based methods coupled with mass spectrometry (MS) offer a high-throughput approach for systematic analysis of spatially restricted proteomes. Proximity labeling utilizes enzymes that generate reactive radicals to covalently tag neighboring proteins with biotin. The biotinylated endogenou  ...[more]

Similar Datasets

| S-EPMC9392063 | biostudies-literature
| S-EPMC6126969 | biostudies-literature
| S-EPMC7275672 | biostudies-literature
| S-EPMC7757286 | biostudies-literature
| S-EPMC8985443 | biostudies-literature
| S-EPMC7176661 | biostudies-literature
| S-EPMC9789103 | biostudies-literature
| S-EPMC7782698 | biostudies-literature
| S-EPMC8890125 | biostudies-literature
| S-EPMC10362359 | biostudies-literature