Unknown

Dataset Information

0

Bifurcated BACH2 control coordinates mantle cell lymphoma survival and dispersal during hypoxia.


ABSTRACT: BACH2, a B-cell-specific transcription factor, plays a critical role in oxidative stress-mediated drug resistance in mantle cell lymphoma (MCL); however, the biological functions of BACH2 and its regulation of B-cell malignancies in chronic hypoxic microenvironment have not been studied. Here, we found that silencing BACH2 led to not only increased tumor formation and colony formation but also increased tumor dispersal to spleen and bone marrow. Decreased BACH2 levels in patients were also correlated with bone marrow and gastrointestinal dispersal of MCL and blastoid subtypes of MCL. Unexpectedly, decreased BACH2 levels in dispersed MCL cells were due to direct transcriptional repression by hypoxia-induced factor 1α (HIF-1α) and increased heme-mediated protein degradation. In normoxic conditions, BACH2 was able to modulate HIF-1α degradation by suppressing prolyl hydroxylase 3 expression. Bifurcated BACH2 controls during hypoxia and normoxia coordinate not only MCL tumor dispersal but also drug resistance, including bortezomib resistance, via plasmacytic differentiation. Our data highlight an interactive relationship between tumor cells and local microenvironment and the mechanisms of B-cell transcription factor in the regulation of MCL dispersal.

SUBMITTER: Zhang H 

PROVIDER: S-EPMC5553575 | biostudies-literature | 2017 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Bifurcated BACH2 control coordinates mantle cell lymphoma survival and dispersal during hypoxia.

Zhang Han H   Chen Zheng Z   Miranda Roberto N RN   Medeiros L Jeffrey LJ   McCarty Nami N  

Blood 20170607 6


BACH2, a B-cell-specific transcription factor, plays a critical role in oxidative stress-mediated drug resistance in mantle cell lymphoma (MCL); however, the biological functions of BACH2 and its regulation of B-cell malignancies in chronic hypoxic microenvironment have not been studied. Here, we found that silencing BACH2 led to not only increased tumor formation and colony formation but also increased tumor dispersal to spleen and bone marrow. Decreased BACH2 levels in patients were also corre  ...[more]

Similar Datasets

| S-EPMC5093039 | biostudies-literature
| S-EPMC8157467 | biostudies-literature
| S-EPMC3732253 | biostudies-literature
| S-EPMC3460632 | biostudies-literature
| S-EPMC10563799 | biostudies-literature
| S-EPMC8864651 | biostudies-literature
| S-EPMC6781731 | biostudies-literature
| S-EPMC7554677 | biostudies-literature
| S-EPMC8425802 | biostudies-literature
2013-06-25 | GSE36000 | GEO