Dual Role of Act1 in Keratinocyte Differentiation and Host Defense: TRAF3IP2 Silencing Alters Keratinocyte Differentiation and Inhibits IL-17 Responses.
Ontology highlight
ABSTRACT: TRAF3IP2 is a candidate psoriasis susceptibility gene encoding Act1, an adaptor protein with ubiquitin ligase activity that couples the IL-17 receptor to downstream signaling pathways. We investigated the role of Act1 in keratinocyte responses to IL-17 using a tetracycline inducible short hairpin RNA targeting TRAF3IP2. Tetracycline exposure for 7 days effectively silenced TRAF3IP2 mRNA and Act1 protein, resulting in 761 genes with significant changes in expression (495 down, 266 up; >1.5-fold, P < 0.05). Gene ontology analysis showed that genes affected by TRAF3IP2 silencing are involved in epidermal differentiation, with early differentiation genes (KRT1, KRT10, DSC1, DSG1) being down-regulated and late differentiation genes (SPRR2, SPRR3, LCE3) being up-regulated. AP1 binding sites were enriched upstream of genes up-regulated by TRAF3IP2 silencing. Correspondingly, nuclear expression of FosB and Fra1 was increased in TRAF3IP2-silenced cells. Many genes involved in host defense were induced by IL-17 in a TRAF3IP2-dependent fashion. Inflammatory differentiation conditions (serum addition for 4 days postconfluence) markedly amplified these IL-17 responses and increased basal levels and TRAF3IP2 silencing-dependent up-regulation of multiple late differentiation genes. These findings suggest that TRAF3IP2 may alter both epidermal homeostasis and keratinocyte defense responses to influence psoriasis risk.
SUBMITTER: Lambert S
PROVIDER: S-EPMC5554967 | biostudies-literature | 2017 Jul
REPOSITORIES: biostudies-literature
ACCESS DATA