Unknown

Dataset Information

0

Bioorthogonal Click Chemistry-Based Synthetic Cell Glue.


ABSTRACT: Artificial methods of cell adhesion can be effective in building functional cell complexes in vitro, but methods for in vivo use are currently lacking. Here, a chemical cell glue based on bioorthogonal click chemistry with high stability and robustness is introduced. Tetrazine (Tz) and trans-cyclooctene (TCO) conjugated to the cell surface form covalent bonds between cells within 10 min in aqueous conditions. Glued, homogeneous, or heterogeneous cell pairs remain viable and stably attached in a microfluidic flow channel at a shear stress of 20 dyn cm(-2) . Upon intravenous injection of assembled Jurkat T cells into live mice, fluorescence microscopy shows the trafficking of cell pairs in circulation and their infiltration into lung tissues. These results demonstrate the promising potential of chemically glued cell pairs for various applications ranging from delivering therapeutic cells to studying cell-cell interactions in vivo.

SUBMITTER: Koo H 

PROVIDER: S-EPMC5556392 | biostudies-literature | 2015 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Bioorthogonal Click Chemistry-Based Synthetic Cell Glue.

Koo Heebeom H   Choi Myunghwan M   Kim Eunha E   Hahn Sei Kwang SK   Weissleder Ralph R   Yun Seok Hyun SH  

Small (Weinheim an der Bergstrasse, Germany) 20151119 48


Artificial methods of cell adhesion can be effective in building functional cell complexes in vitro, but methods for in vivo use are currently lacking. Here, a chemical cell glue based on bioorthogonal click chemistry with high stability and robustness is introduced. Tetrazine (Tz) and trans-cyclooctene (TCO) conjugated to the cell surface form covalent bonds between cells within 10 min in aqueous conditions. Glued, homogeneous, or heterogeneous cell pairs remain viable and stably attached in a  ...[more]

Similar Datasets

| S-EPMC3547663 | biostudies-other
| S-EPMC4759614 | biostudies-literature
| S-EPMC4151562 | biostudies-literature
| S-EPMC4078914 | biostudies-literature
| S-EPMC6472971 | biostudies-literature
2024-04-15 | GSE231507 | GEO
| S-EPMC4841469 | biostudies-literature
| S-EPMC5905148 | biostudies-literature
| S-EPMC10123962 | biostudies-literature