Tissue and cellular biomechanics during corneal wound injury and repair.
Ontology highlight
ABSTRACT: Corneal wound healing is an enormously complex process that requires the simultaneous cellular integration of multiple soluble biochemical cues, as well as cellular responses to the intrinsic chemistry and biophysical attributes associated with the matrix of the wound space. Here, we document how the biomechanics of the corneal stroma are altered through the course of wound repair following keratoablative procedures in rabbits. Further we documented the influence that substrate stiffness has on stromal cell mechanics. Following corneal epithelial debridement, New Zealand white rabbits underwent phototherapeutic keratectomy (PTK) on the right eye (OD). Wound healing was monitored using advanced imaging modalities. Rabbits were euthanized and corneas were harvested at various time points following PTK. Tissues were characterized for biomechanics with atomic force microscopy and with histology to assess inflammation and fibrosis. Factor analysis was performed to determine any discernable patterns in wound healing parameters. The matrix associated with the wound space was stiffest at 7days post PTK. The greatest number of inflammatory cells were observed 3days after wounding. The highest number of myofibroblasts and the greatest degree of fibrosis occurred 21days after wounding. While all clinical parameters returned to normal values 400days after wounding, the elastic modulus remained greater than pre-surgical values. Factor analysis demonstrated dynamic remodeling of stroma occurs between days 10 and 42 during corneal stromal wound repair. Elastic modulus of the anterior corneal stroma is dramatically altered following PTK and its changes coincide initially with the development of edema and inflammation, and later with formation of stromal haze and population of the wound space with myofibroblasts. Factor analysis demonstrates strongest correlation between elastic modulus, myofibroblasts, fibrosis and stromal haze thickness, and between edema and central corneal thickness. STATEMENT OF SIGNIFICANCE:Tissue biomechanics during the course of corneal wound healing is documented for the first time through atomic force microscopy, and is correlated with advanced clinical imaging and immunohistochemistry. Parameters obtained from the study are applied in a multivariate statistical model to cluster the data for better classification and monitor the wound repair process. Elastic modulus of the anterior corneal stroma is dramatically altered following wounding and correlates initially with the development of edema and inflammation, and later with formation of stromal haze and population of the wound space with myofibroblasts. Importantly, the occurrence of myofibroblasts is preceded by changes in tissue mechanics, which is important to consider in light of crosslinking procedures applied to treat corneal diseases.
SUBMITTER: Raghunathan VK
PROVIDER: S-EPMC5560898 | biostudies-literature | 2017 Aug
REPOSITORIES: biostudies-literature
ACCESS DATA