Unknown

Dataset Information

0

Intracellular Proteolysis of Progranulin Generates Stable, Lysosomal Granulins that Are Haploinsufficient in Patients with Frontotemporal Dementia Caused by GRN Mutations.


ABSTRACT: Homozygous or heterozygous mutations in the GRN gene, encoding progranulin (PGRN), cause neuronal ceroid lipofuscinosis (NCL) or frontotemporal dementia (FTD), respectively. NCL and FTD are characterized by lysosome dysfunction and neurodegeneration, indicating PGRN is important for lysosome homeostasis in the brain. PGRN is trafficked to the lysosome where its functional role is unknown. PGRN can be cleaved into seven 6-kDa proteins called granulins (GRNs); however, little is known about how GRNs are produced or if levels of GRNs are altered in FTD-GRN mutation carriers. Here, we report the identification and characterization of antibodies that reliably detect several human GRNs by immunoblot and immunocytochemistry. Using these tools, we find that endogenous GRNs are present within multiple cell lines and are constitutively produced. Further, extracellular PGRN is endocytosed and rapidly processed into stable GRNs within lysosomes. Processing of PGRN into GRNs is conserved between humans and mice and is modulated by sortilin expression and mediated by cysteine proteases (i.e. cathpesin L). Induced lysosome dysfunction caused by alkalizing agents or increased expression of transmembrane protein 106B (TMEM106B) inhibit processing of PGRN into GRNs. Finally, we find that multiple GRNs are haploinsufficient in primary fibroblasts and cortical brain tissue from FTD-GRN patients. Taken together, our findings raise the interesting possibility that GRNs carry out critical lysosomal functions and that loss of GRNs should be explored as an initiating factor in lysosomal dysfunction and neurodegeneration caused by GRN mutations.

SUBMITTER: Holler CJ 

PROVIDER: S-EPMC5562298 | biostudies-literature | 2017 Jul-Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Intracellular Proteolysis of Progranulin Generates Stable, Lysosomal Granulins that Are Haploinsufficient in Patients with Frontotemporal Dementia Caused by <i>GRN</i> Mutations.

Holler Christopher J CJ   Taylor Georgia G   Deng Qiudong Q   Kukar Thomas T  

eNeuro 20170701 4


Homozygous or heterozygous mutations in the <i>GRN</i> gene, encoding progranulin (PGRN), cause neuronal ceroid lipofuscinosis (NCL) or frontotemporal dementia (FTD), respectively. NCL and FTD are characterized by lysosome dysfunction and neurodegeneration, indicating PGRN is important for lysosome homeostasis in the brain. PGRN is trafficked to the lysosome where its functional role is unknown. PGRN can be cleaved into seven 6-kDa proteins called granulins (GRNs); however, little is known about  ...[more]

Similar Datasets

| S-EPMC2756561 | biostudies-literature
| S-EPMC8330050 | biostudies-literature
| S-EPMC8017751 | biostudies-literature
| S-EPMC3104467 | biostudies-literature
| S-EPMC5558861 | biostudies-literature
| S-EPMC4919863 | biostudies-literature
| S-EPMC7541308 | biostudies-literature
| S-EPMC9546883 | biostudies-literature
| S-EPMC10268535 | biostudies-literature
| S-EPMC3225509 | biostudies-literature