Structural features and seismotectonic implications of coseismic surface ruptures produced by the 2016 Mw 7.1 Kumamoto earthquake.
Ontology highlight
ABSTRACT: Field investigations and analyses of satellite images and aerial photographs reveal that the 2016 Mw 7.1 (Mj 7.3) Kumamoto earthquake produced a ?40-km surface rupture zone striking NE-SW on central Kyushu Island, Japan. Coseismic surface ruptures were characterized by shear faults, extensional cracks, and mole tracks, which mostly occurred along the pre-existing NE-SW-striking Hinagu-Futagawa fault zone in the southwest and central segments, and newly identified faults in the northeast segment. This study shows that (i) the Hinagu-Futagawa fault zone triggered the 2016 Kumamoto earthquake and controlled the spatial distribution of coseismic surface ruptures; (ii) the southwest and central segments were dominated by right-lateral strike-slip movement with a maximum in-site measured displacement of up to 2.5 m, accompanied by a minor vertical component. In contrast, the northeast segment was dominated by normal faulting with a maximum vertical offset of up to 1.75 m with a minor horizontal component that formed graben structures inside Aso caldera; (iii) coseismic rupturing initiated at the jog area between the Hinagu and Futagawa faults, then propagated northeastward into Aso caldera, where it terminated. The 2016 Mw 7.1 Kumamoto earthquake therefore offers a rare opportunity to study the relationships between coseismic rupture processes and pre-existing active faults, as well as the seismotectonics of Aso volcano.
SUBMITTER: Lin A
PROVIDER: S-EPMC5563349 | biostudies-literature | 2017
REPOSITORIES: biostudies-literature
ACCESS DATA