Unknown

Dataset Information

0

Regulated IRE1-dependent mRNA decay sets the threshold for dendritic cell survival.


ABSTRACT: The IRE1-XBP1 signalling pathway is part of a cellular programme that protects against endoplasmic reticulum (ER) stress, but also controls development and survival of immune cells. Loss of XBP1 in splenic type 1 conventional dendritic cells (cDC1s) results in functional alterations without affecting cell survival. However, in mucosal cDC1s, loss of XBP1 impaired survival in a tissue-specific manner-while lung cDC1s die, intestinal cDC1s survive. This was not caused by differential activation of ER stress cell-death regulators CHOP or JNK. Rather, survival of intestinal cDC1s was associated with their ability to shut down protein synthesis through a protective integrated stress response and their marked increase in regulated IRE1-dependent messenger RNA decay. Furthermore, loss of IRE1 endonuclease on top of XBP1 led to cDC1 loss in the intestine. Thus, mucosal DCs differentially mount ATF4- and IRE1-dependent adaptive mechanisms to survive in the face of ER stress.

SUBMITTER: Tavernier SJ 

PROVIDER: S-EPMC5563826 | biostudies-literature | 2017 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications


The IRE1-XBP1 signalling pathway is part of a cellular programme that protects against endoplasmic reticulum (ER) stress, but also controls development and survival of immune cells. Loss of XBP1 in splenic type 1 conventional dendritic cells (cDC1s) results in functional alterations without affecting cell survival. However, in mucosal cDC1s, loss of XBP1 impaired survival in a tissue-specific manner-while lung cDC1s die, intestinal cDC1s survive. This was not caused by differential activation of  ...[more]

Similar Datasets

| S-EPMC5650469 | biostudies-literature
| S-EPMC10551036 | biostudies-literature
| S-EPMC2728407 | biostudies-literature
| S-EPMC8969279 | biostudies-literature
2022-04-06 | GSE152070 | GEO
2017-09-14 | GSE98934 | GEO
2021-06-01 | GSE169585 | GEO
| S-EPMC8416019 | biostudies-literature
2021-06-01 | GSE169584 | GEO
2021-06-01 | GSE169583 | GEO