Unknown

Dataset Information

0

Development of Single-Channel Hybrid BCI System Using Motor Imagery and SSVEP.


ABSTRACT: Numerous EEG-based brain-computer interface (BCI) systems that are being developed focus on novel feature extraction algorithms, classification methods and combining existing approaches to create hybrid BCIs. Several recent studies demonstrated various advantages of hybrid BCI systems in terms of an improved accuracy or number of commands available for the user. But still, BCI systems are far from realization for daily use. Having high performance with less number of channels is one of the challenging issues that persists, especially with hybrid BCI systems, where multiple channels are necessary to record information from two or more EEG signal components. Therefore, this work proposes a single-channel (C3 or C4) hybrid BCI system that combines motor imagery (MI) and steady-state visually evoked potential (SSVEP) approaches. This study demonstrates that besides MI features, SSVEP features can also be captured from C3 or C4 channel. The results show that due to rich feature information (MI and SSVEP) at these channels, the proposed hybrid BCI system outperforms both MI- and SSVEP-based systems having an average classification accuracy of 85.6?±?7.7% in a two-class task.

SUBMITTER: Ko LW 

PROVIDER: S-EPMC5564129 | biostudies-literature | 2017

REPOSITORIES: biostudies-literature

altmetric image

Publications

Development of Single-Channel Hybrid BCI System Using Motor Imagery and SSVEP.

Ko Li-Wei LW   Ranga S S K SSK   Komarov Oleksii O   Chen Chung-Chiang CC  

Journal of healthcare engineering 20170807


Numerous EEG-based brain-computer interface (BCI) systems that are being developed focus on novel feature extraction algorithms, classification methods and combining existing approaches to create hybrid BCIs. Several recent studies demonstrated various advantages of hybrid BCI systems in terms of an improved accuracy or number of commands available for the user. But still, BCI systems are far from realization for daily use. Having high performance with less number of channels is one of the chall  ...[more]

Similar Datasets

| S-EPMC3152890 | biostudies-other
| S-EPMC7755477 | biostudies-literature
| S-EPMC7697603 | biostudies-literature
| S-EPMC7766128 | biostudies-literature
| S-EPMC7759669 | biostudies-literature
| S-EPMC8215169 | biostudies-literature
| S-EPMC7324867 | biostudies-literature
| S-EPMC7005877 | biostudies-literature
| S-EPMC5474280 | biostudies-literature