Unknown

Dataset Information

0

Theoretical simulation of the infrared signature of mechanically stressed polymer solids.


ABSTRACT: Mechanical stress leads to deformation of strands in polymer solids, including elongation of covalent bonds and widening of bond angles, which changes the infrared spectrum. Here, the infrared spectrum of solid polymer samples exposed to mechanical stress is simulated by density functional theory calculations. Mechanical stress is described with the external force explicitly included (EFEI) method. The uneven distribution of the external stress on individual polymer strands is accounted for by a convolution of simulated spectra with a realistic force distribution. N-Propylpropanamide and propyl propanoate are chosen as model molecules for polyamide and polyester, respectively. The effect of a specific force on the polymer backbone is a redshift of vibrational modes involving the C-N and C-O bonds in the backbone, while the free C-O stretching mode perpendicular to the backbone is largely unaffected. The convolution with a realistic force distribution shows that the dominant effect on the strongest infrared bands is not a shift of the peak position, but rather peak broadening and a characteristic change in the relative intensities of the strongest bands, which may serve for the identification and quantification of mechanical stress in polymer solids.

SUBMITTER: Sammon MS 

PROVIDER: S-EPMC5564256 | biostudies-literature | 2017

REPOSITORIES: biostudies-literature

altmetric image

Publications

Theoretical simulation of the infrared signature of mechanically stressed polymer solids.

Sammon Matthew S MS   Ončák Milan M   Beyer Martin K MK  

Beilstein journal of organic chemistry 20170817


Mechanical stress leads to deformation of strands in polymer solids, including elongation of covalent bonds and widening of bond angles, which changes the infrared spectrum. Here, the infrared spectrum of solid polymer samples exposed to mechanical stress is simulated by density functional theory calculations. Mechanical stress is described with the external force explicitly included (EFEI) method. The uneven distribution of the external stress on individual polymer strands is accounted for by a  ...[more]

Similar Datasets

| S-EPMC5577297 | biostudies-literature
| S-EPMC9401616 | biostudies-literature
| S-EPMC2840258 | biostudies-literature
| S-EPMC8854694 | biostudies-literature
| S-EPMC8320572 | biostudies-literature
| S-EPMC8365911 | biostudies-literature
| S-EPMC8812728 | biostudies-literature
| S-EPMC7344527 | biostudies-literature
| S-EPMC7304875 | biostudies-literature
| S-EPMC10324458 | biostudies-literature