Unknown

Dataset Information

0

Genetic-based interactions among tree neighbors: identification of the most influential neighbors, and estimation of correlations among direct and indirect genetic effects for leaf disease and growth in Eucalyptus globulus.


ABSTRACT: An individual's genes may influence the phenotype of neighboring conspecifics. Such indirect genetic effects (IGEs) are important as they can affect the apparent total heritable variance in a population, and thus the response to selection. We studied these effects in a large, pedigreed population of Eucalyptus globulus using variance component analyses of Mycosphearella leaf disease, diameter growth at age 2 years, and post-infection diameter growth at ages 4 and 8 years. In a novel approach, we initially modeled IGEs using a factor analytic (FA) structure to identify the most influential neighbor positions, with the FA loadings being position-specific regressions on the IGEs. This involved sequentially comparing FA models for the variance-covariance matrices of the direct and indirect effects of each neighbor. We then modeled IGEs as a distance-based, combined effect of the most influential neighbors. This often increased the magnitude and significance of indirect genetic variance estimates relative to using all neighbors. The extension of a univariate IGEs model to bivariate analyses also provided insights into the genetic architecture of this population, revealing that: (1) IGEs arising from increased probability of neighbor infection were not associated with reduced growth of neighbors, despite adverse fitness effects being evident at the direct genetic level; and (2) the strong, genetic-based competitive interactions for growth, established early in stand development, were highly positively correlated over time. Our results highlight the complexities of genetic-based interactions at the multi-trait level due to (co)variances associated with IGEs, and the marked discrepancy occurring between direct and total heritable variances.

SUBMITTER: Costa E Silva J 

PROVIDER: S-EPMC5564376 | biostudies-literature | 2017 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Genetic-based interactions among tree neighbors: identification of the most influential neighbors, and estimation of correlations among direct and indirect genetic effects for leaf disease and growth in Eucalyptus globulus.

Costa E Silva J J   Potts B M BM   Gilmour A R AR   Kerr R J RJ  

Heredity 20170531 3


An individual's genes may influence the phenotype of neighboring conspecifics. Such indirect genetic effects (IGEs) are important as they can affect the apparent total heritable variance in a population, and thus the response to selection. We studied these effects in a large, pedigreed population of Eucalyptus globulus using variance component analyses of Mycosphearella leaf disease, diameter growth at age 2 years, and post-infection diameter growth at ages 4 and 8 years. In a novel approach, we  ...[more]

Similar Datasets

| S-EPMC4455773 | biostudies-literature
2011-12-31 | GSE31696 | GEO
2011-12-31 | E-GEOD-31696 | biostudies-arrayexpress
| S-EPMC3276126 | biostudies-literature
| S-EPMC5697824 | biostudies-literature
| S-EPMC5444472 | biostudies-literature
| S-EPMC4207822 | biostudies-literature
| S-EPMC5726616 | biostudies-literature
| S-EPMC3617827 | biostudies-other
| PRJNA177431 | ENA