Unknown

Dataset Information

0

Biological characterization of SN32976, a selective inhibitor of PI3K and mTOR with preferential activity to PI3K?, in comparison to established pan PI3K inhibitors.


ABSTRACT: Multiple therapeutic agents have been developed to target the phosphatidylinositol 3-kinase (PI3K) signaling pathway, which is frequently dysregulated in cancer promoting tumor growth and survival. These include pan PI3K inhibitors, which target class Ia PI3K isoforms and have largely shown limited single agent activity with narrow therapeutic windows in clinical trials. Here, we characterize SN32976, a novel pan PI3K inhibitor, for its biochemical potency against PI3K isoforms and mTOR, kinase selectivity, cellular activity, pharmacokinetics, pharmacodynamics and antitumor efficacy relative to five clinically-evaluated pan PI3K inhibitors: buparlisib, dactolisib, pictilisib, omipalisib and ZSTK474. SN32976 potently inhibited PI3K isoforms and mTOR, displaying preferential activity for PI3K? and sparing of PI3K? relative to the other inhibitors, while showing less off-target activity than the clinical inhibitors in a panel of 442 kinases. The major metabolites of SN32976 were also potent PI3K inhibitors with similar selectivity for PI3K? as the parent compound. SN32976 compared favorably with the clinically-evaluated PI3K inhibitors in cellular assays, inhibiting pAKT expression and cell proliferation at nM concentrations, and in animal models, inducing a greater extent and duration of pAKT inhibition in tumors than pictilisib, dactolisib and omipalisib at similarly tolerated dose levels and inhibiting tumor growth to a greater extent than dactolisib and ZSTK474 and with similar efficacy to pictilisib and omipalisib. These results suggest that SN32976 is a promising clinical candidate for cancer therapy with enhanced kinase selectivity and preferential inhibition of PI3K? compared to first generation pan PI3K inhibitors, while retaining comparable anticancer activity.

SUBMITTER: Rewcastle GW 

PROVIDER: S-EPMC5564600 | biostudies-literature | 2017 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Biological characterization of SN32976, a selective inhibitor of PI3K and mTOR with preferential activity to PI3Kα, in comparison to established pan PI3K inhibitors.

Rewcastle Gordon W GW   Kolekar Sharada S   Buchanan Christina M CM   Gamage Swarna A SA   Giddens Anna C AC   Tsang Kit Y KY   Kendall Jackie D JD   Singh Ripudaman R   Lee Woo-Jeong WJ   Smith Greg C GC   Han Weiping W   Matthews David J DJ   Denny William A WA   Shepherd Peter R PR   Jamieson Stephen M F SMF  

Oncotarget 20170701 29


Multiple therapeutic agents have been developed to target the phosphatidylinositol 3-kinase (PI3K) signaling pathway, which is frequently dysregulated in cancer promoting tumor growth and survival. These include pan PI3K inhibitors, which target class Ia PI3K isoforms and have largely shown limited single agent activity with narrow therapeutic windows in clinical trials. Here, we characterize SN32976, a novel pan PI3K inhibitor, for its biochemical potency against PI3K isoforms and mTOR, kinase  ...[more]

Similar Datasets

2013-12-14 | E-GEOD-53309 | biostudies-arrayexpress
2013-12-14 | GSE53309 | GEO
| S-EPMC5270685 | biostudies-literature
| S-EPMC5400620 | biostudies-literature
| S-EPMC3717802 | biostudies-other
| S-EPMC4027466 | biostudies-literature
2020-12-24 | GSE123740 | GEO
| S-EPMC6099940 | biostudies-literature
| S-EPMC10054477 | biostudies-literature
| S-EPMC3828226 | biostudies-literature