Unknown

Dataset Information

0

Protonation-State-Dependent Communication in Cytochrome c Oxidase.


ABSTRACT: Proton transfer in cytochrome c oxidase from the cellular inside to the binuclear redox center (BNC) can occur through two distinct pathways, the D- and K-channels. For the protein to function as both a redox enzyme and a proton pump, proton transfer into the protein toward the BNC or toward a proton loading site (and ultimately through the membrane) must be highly regulated. The PR ? F transition is the first step in a catalytic cycle that requires proton transfer from the bulk at the N-side to the BNC. Molecular dynamics simulations of the PR ? F intermediate of this transition, with 16 different combinations of protonation states of key residues in the D- and K-channel, show the impact of the K-channel on the D-channel to be protonation-state dependent. Strength as well as means of communication, correlations in positions, or communication along the hydrogen-bonded network depends on the protonation state of the K-channel residue K362. The conformational and hydrogen-bond dynamics of the D-channel residue N139 is regulated by an interplay of protonation in the D-channel and K362. N139 thus assumes a gating function by which proton passage through the D-channel toward E286 is likely facilitated for states with protonated K362 and unprotonated E286. In contrast, proton passage through the D-channel is hindered by N139's preference for a closed conformation in situations with protonated E286.

SUBMITTER: Bagherpoor Helabad M 

PROVIDER: S-EPMC5567593 | biostudies-literature | 2017 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Protonation-State-Dependent Communication in Cytochrome c Oxidase.

Bagherpoor Helabad Mahdi M   Ghane Tahereh T   Reidelbach Marco M   Woelke Anna Lena AL   Knapp Ernst Walter EW   Imhof Petra P  

Biophysical journal 20170801 4


Proton transfer in cytochrome c oxidase from the cellular inside to the binuclear redox center (BNC) can occur through two distinct pathways, the D- and K-channels. For the protein to function as both a redox enzyme and a proton pump, proton transfer into the protein toward the BNC or toward a proton loading site (and ultimately through the membrane) must be highly regulated. The P<sub>R</sub> → F transition is the first step in a catalytic cycle that requires proton transfer from the bulk at th  ...[more]

Similar Datasets

| S-EPMC4982942 | biostudies-literature
| S-EPMC10341450 | biostudies-literature
| S-EPMC166378 | biostudies-literature
| S-EPMC9687966 | biostudies-literature
2020-10-07 | GSE159080 | GEO
| S-EPMC7052191 | biostudies-literature
| S-EPMC2874424 | biostudies-literature
| S-EPMC3418816 | biostudies-literature
| S-EPMC1219261 | biostudies-other
| PRJNA949566 | ENA