Unknown

Dataset Information

0

Physiology can contribute to better understanding, management, and conservation of coral reef fishes.


ABSTRACT: Coral reef fishes, like many other marine organisms, are affected by anthropogenic stressors such as fishing and pollution and, owing to climate change, are experiencing increasing water temperatures and ocean acidification. Against the backdrop of these various stressors, a mechanistic understanding of processes governing individual organismal performance is the first step for identifying drivers of coral reef fish population dynamics. In fact, physiological measurements can help to reveal potential cause-and-effect relationships and enable physiologists to advise conservation management by upscaling results from cellular and individual organismal levels to population levels. Here, we highlight studies that include physiological measurements of coral reef fishes and those that give advice for their conservation. A literature search using combined physiological, conservation and coral reef fish key words resulted in ~1900 studies, of which only 99 matched predefined requirements. We observed that, over the last 20 years, the combination of physiological and conservation aspects in studies on coral reef fishes has received increased attention. Most of the selected studies made their physiological observations at the whole organism level and used their findings to give conservation advice on population dynamics, habitat use or the potential effects of climate change. The precision of the recommendations differed greatly and, not surprisingly, was least concrete when studies examined the effects of projected climate change scenarios. Although more and more physiological studies on coral reef fishes include conservation aspects, there is still a lack of concrete advice for conservation managers, with only very few published examples of physiological findings leading to improved management practices. We conclude with a call to action to foster better knowledge exchange between natural scientists and conservation managers to translate physiological findings more effectively in order to obtain evidence-based and adaptive management strategies for the conservation of coral reef fishes.

SUBMITTER: Illing B 

PROVIDER: S-EPMC5570121 | biostudies-literature | 2017

REPOSITORIES: biostudies-literature

altmetric image

Publications

Physiology can contribute to better understanding, management, and conservation of coral reef fishes.

Illing Björn B   Rummer Jodie L JL  

Conservation physiology 20170223 1


Coral reef fishes, like many other marine organisms, are affected by anthropogenic stressors such as fishing and pollution and, owing to climate change, are experiencing increasing water temperatures and ocean acidification. Against the backdrop of these various stressors, a mechanistic understanding of processes governing individual organismal performance is the first step for identifying drivers of coral reef fish population dynamics. In fact, physiological measurements can help to reveal pote  ...[more]

Similar Datasets

| PRJNA747115 | ENA
| S-EPMC3627313 | biostudies-literature
2019-02-14 | GSE124093 | GEO
| S-EPMC5136584 | biostudies-literature
| S-EPMC5717098 | biostudies-literature
| S-EPMC8440548 | biostudies-literature
| S-EPMC3541231 | biostudies-literature
| S-EPMC7953877 | biostudies-literature
| S-EPMC5656311 | biostudies-other
| S-EPMC8415428 | biostudies-literature