Unknown

Dataset Information

0

A prebiotically plausible synthesis of pyrimidine ?-ribonucleosides and their phosphate derivatives involving photoanomerization.


ABSTRACT: Previous research has identified ribose aminooxazoline as a potential intermediate in the prebiotic synthesis of the pyrimidine nucleotides with remarkable properties. It crystallizes spontaneously from reaction mixtures, with an enhanced enantiomeric excess if initially enantioenriched, which suggests that reservoirs of this compound might have accumulated on the early Earth in an optically pure form. Ribose aminooxazoline can be converted efficiently into ?-ribocytidine by way of 2,2'-anhydroribocytidine, although anomerization to ?-ribocytidine by ultraviolet irradiation is extremely inefficient. Our previous work demonstrated the synthesis of pyrimidine ?-ribonucleotides, but at the cost of ignoring ribose aminooxazoline, using arabinose aminooxazoline instead. Here we describe a long-sought route through ribose aminooxazoline to the pyrimidine ?-ribonucleosides and their phosphate derivatives that involves an extraordinarily efficient photoanomerization of ?-2-thioribocytidine. In addition to the canonical nucleosides, our synthesis accesses ?-2-thioribouridine, a modified nucleoside found in transfer RNA that enables both faster and more-accurate nucleic acid template-copying chemistry.

SUBMITTER: Xu J 

PROVIDER: S-EPMC5576532 | biostudies-literature | 2017 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

A prebiotically plausible synthesis of pyrimidine β-ribonucleosides and their phosphate derivatives involving photoanomerization.

Xu Jianfeng J   Tsanakopoulou Maria M   Magnani Christopher J CJ   Szabla Rafał R   Šponer Judit E JE   Šponer Jiří J   Góra Robert W RW   Sutherland John D JD  

Nature chemistry 20161121 4


Previous research has identified ribose aminooxazoline as a potential intermediate in the prebiotic synthesis of the pyrimidine nucleotides with remarkable properties. It crystallizes spontaneously from reaction mixtures, with an enhanced enantiomeric excess if initially enantioenriched, which suggests that reservoirs of this compound might have accumulated on the early Earth in an optically pure form. Ribose aminooxazoline can be converted efficiently into α-ribocytidine by way of 2,2'-anhydror  ...[more]

Similar Datasets

| S-EPMC9299922 | biostudies-literature
| S-EPMC4074891 | biostudies-literature
| S-EPMC6340128 | biostudies-literature
| S-EPMC7898671 | biostudies-literature
| S-EPMC5776833 | biostudies-other
| S-EPMC3378899 | biostudies-other
| S-EPMC7577263 | biostudies-literature
| S-EPMC7084097 | biostudies-literature
| S-EPMC6264579 | biostudies-literature
| S-EPMC4333585 | biostudies-literature