Unknown

Dataset Information

0

Controlling Directed Protein Interaction Networks in Cancer.


ABSTRACT: Control theory is a well-established approach in network science, with applications in bio-medicine and cancer research. We build on recent results for structural controllability of directed networks, which identifies a set of driver nodes able to control an a-priori defined part of the network. We develop a novel and efficient approach for the (targeted) structural controllability of cancer networks and demonstrate it for the analysis of breast, pancreatic, and ovarian cancer. We build in each case a protein-protein interaction network and focus on the survivability-essential proteins specific to each cancer type. We show that these essential proteins are efficiently controllable from a relatively small computable set of driver nodes. Moreover, we adjust the method to find the driver nodes among FDA-approved drug-target nodes. We find that, while many of the drugs acting on the driver nodes are part of known cancer therapies, some of them are not used for the cancer types analyzed here; some drug-target driver nodes identified by our algorithms are not known to be used in any cancer therapy. Overall we show that a better understanding of the control dynamics of cancer through computational modelling can pave the way for new efficient therapeutic approaches and personalized medicine.

SUBMITTER: Kanhaiya K 

PROVIDER: S-EPMC5583175 | biostudies-literature | 2017 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Controlling Directed Protein Interaction Networks in Cancer.

Kanhaiya Krishna K   Czeizler Eugen E   Gratie Cristian C   Petre Ion I  

Scientific reports 20170904 1


Control theory is a well-established approach in network science, with applications in bio-medicine and cancer research. We build on recent results for structural controllability of directed networks, which identifies a set of driver nodes able to control an a-priori defined part of the network. We develop a novel and efficient approach for the (targeted) structural controllability of cancer networks and demonstrate it for the analysis of breast, pancreatic, and ovarian cancer. We build in each  ...[more]

Similar Datasets

| S-EPMC3807112 | biostudies-other
| S-EPMC3524085 | biostudies-other
| S-EPMC8769308 | biostudies-literature
| S-EPMC3709748 | biostudies-literature
| S-EPMC4606133 | biostudies-literature
| S-EPMC6194649 | biostudies-literature
| S-EPMC5982744 | biostudies-literature
| S-EPMC4804358 | biostudies-literature
| S-EPMC9580883 | biostudies-literature
| S-EPMC2871146 | biostudies-literature