Ontology highlight
ABSTRACT: Significance
OI is a prototype for skeletal dysplasias. It is a highly heterogeneous collagen-related disorder with dominant, recessive and X-linked transmission. There is no definitive cure for this disease, thus a better understanding of the molecular basis of its pathophysiology is expected to contribute in identifying potential targets to develop new treatments. Based on this concept, we performed a functional proteomic study to delineate affected molecular pathways in primary fibroblasts from recessive OI patients, carrying mutations in CRTAP (OI type VII), P3H1 (OI type VIII), and PPIB (OI type IX) genes. Our analyses demonstrated the occurrence of an altered cytoskeleton and, for the first time in OI, of nuclear lamina organization. Hence, cytoskeleton and nucleoskeleton components may be considered as novel drug targets for clinical management of the disease. Finally, according to our analyses, OI emerged to share similar deregulated pathways and molecular aberrances, as previously described, with other rare disorders caused by different genetic defects. Those aberrances may provide common pharmacological targets to support classical clinical approach in treating different diseases.
SUBMITTER: Gagliardi A
PROVIDER: S-EPMC5584732 | biostudies-literature | 2017 Sep
REPOSITORIES: biostudies-literature
Journal of proteomics 20170809
Osteogenesis imperfecta (OI) is a collagen-related disorder associated to dominant, recessive or X-linked transmission, mainly caused by mutations in type I collagen genes or in genes involved in type I collagen metabolism. Among the recessive forms, OI types VII, VIII, and IX are due to mutations in CRTAP, P3H1, and PPIB genes, respectively. They code for the three components of the endoplasmic reticulum complex that catalyzes 3-hydroxylation of type I collagen α1Pro986. Under-hydroxylation of ...[more]