Activation of cancerous inhibitor of PP2A (CIP2A) contributes to lapatinib resistance through induction of CIP2A-Akt feedback loop in ErbB2-positive breast cancer cells.
Ontology highlight
ABSTRACT: Lapatinib, a small molecule ErbB2/EGFR inhibitor, is FDA-approved for the treatment of metastatic ErbB2-overexpressing breast cancer; however, lapatinib resistance is an emerging clinical challenge. Understanding the molecular mechanisms of lapatinib-mediated anti-cancer activities and identifying relevant resistance factors are of pivotal significance. Cancerous inhibitor of protein phosphatase 2A (CIP2A) is a recently identified oncoprotein that is overexpressed in breast cancer. Our study investigated the role of CIP2A in the anti-cancer efficacy of lapatinib in ErbB2-overexpressing breast cancer cells. We found that lapatinib concurrently downregulated CIP2A and receptor tyrosine kinase signaling in ErbB2-overexpressing SKBR3 and 78617 cells; however, these effects were attenuated in lapatinib-resistant (LR) cells. CIP2A overexpression rendered SKBR3 and 78617 cells resistant to lapatinib-induced apoptosis and growth inhibition. Conversely, CIP2A knockdown via lentiviral shRNA enhanced cell sensitivity to lapatinib-induced growth inhibition and apoptosis. Results also suggested that lapatinib downregulated CIP2A through regulation of protein stability. We further demonstrated that lapatinib-induced CIP2A downregulation can be recapitulated by LY294002, suggesting that Akt mediates CIP2A upregulation. Importantly, lapatinib induced differential CIP2A downregulation between parental BT474 and BT474/LR cell lines. Moreover, CIP2A shRNA knockdown significantly sensitized the BT474/LR cells to lapatinib. Collectively, our results demonstrate that CIP2A is a molecular target and resistance factor of lapatinib with a critical role in lapatinib-induced cellular responses, including the inhibition of the CIP2A-Akt feedback loop. Further investigation of lapatinib-mediated CIP2A regulation will advance our understanding of lapatinib-associated anti-tumor activities and drug resistance.
SUBMITTER: Zhao M
PROVIDER: S-EPMC5601698 | biostudies-literature | 2017 Aug
REPOSITORIES: biostudies-literature
ACCESS DATA