Toward a General Yet Effective Computational Approach for Diffusive Problems: Variable Diffusion Tensor and DVR Solution of the Smoluchowski Equation along a General One-Dimensional Coordinate.
Ontology highlight
ABSTRACT: A generalization to arbitrary large amplitude motions of a recent approach to the evaluation of diffusion tensors [ J. Comput. Chem. , 2009 , 30 , 2 - 13 ] is presented and implemented in a widely available package for electronic structure computations. A fully black-box tool is obtained, which, starting from the generation of geometric structures along different kinds of paths, proceeds toward the evaluation of an effective diffusion tensor and to the solution of one-dimensional Smoluchowski equations by a robust numerical approach rooted in the discrete variable representation (DVR). Application to a number of case studies shows that the results issuing from our approach are identical to those delivered by previous software (in particular DiTe) for rigid scans along a dihedral angle, but can be improved by employing relaxed scans (i.e., constrained geometry optimizations) or even more general large amplitude paths. The theoretical and numerical background is robust and general enough to allow quite straightforward extensions in several directions (e.g., inclusion of reactive paths, solution of Fokker-Planck or stochastic Liouville equations, multidimensional problems, free-energy rather than electronic-energy driven processes).
SUBMITTER: Piserchia A
PROVIDER: S-EPMC5603279 | biostudies-literature | 2016 Aug
REPOSITORIES: biostudies-literature
ACCESS DATA