Project description:The anterior thalamic nuclei are assumed to support episodic memory with anterior thalamic dysfunction a core feature of diencephalic amnesia. To date, the electrophysiological characterization of this region in behaving rodents has been restricted to the anterodorsal nucleus. Here we compared single-unit spikes with population activity in the anteroventral nucleus (AV) of freely moving rats during foraging and during naturally occurring sleep. We identified AV units that synchronize their bursting activity in the 6-11 Hz range. We show for the first time in freely moving rats that a subgroup of AV neurons is strongly entrained by theta oscillations. This feature together with their firing properties and spike shape suggests they be classified as "theta" units. To prove the selectivity of AV theta cells for theta rhythm, we compared the relation of spiking rhythmicity to local field potentials during theta and non-theta periods. The most distinguishable non-theta oscillations in rodent anterior thalamus are sleep spindles. We therefore compared the firing properties of AV units during theta and spindle periods. We found that theta and spindle oscillations differ in their spatial distribution within AV, suggesting separate cellular sources for these oscillations. While theta-bursting neurons were related to the distribution of local field theta power, spindle amplitude was independent of the theta units' position. Slow- and fast-spiking bursting units that are selectively entrained to theta rhythm comprise 23.7% of AV neurons. Our results provide a framework for electrophysiological classification of AV neurons as part of theta limbic circuitry.
Project description:Neural entrainment and alpha oscillatory power (8-14 Hz) are mechanisms of selective attention. The extent to which these two mechanisms interact, especially in the context of visuospatial attention, is unclear. Here, we show that spatial attention to a delta-frequency, rhythmic visual stimulus in one hemifield results in phase-amplitude coupling between the delta-phase of an entrained frontal source and alpha power generated by ipsilateral visuocortical regions. The driving of ipsilateral alpha power by frontal delta also correlates with task performance. Our analyses suggest that neural entrainment may serve a previously underappreciated role in coordinating macroscale brain networks and that inhibition of processing by alpha power can be coupled to an attended temporal structure. Finally, we note that the observed coupling bolsters one dominant hypothesis of modern cognitive neuroscience, that macroscale brain networks and distributed neural computation are coordinated by oscillatory synchrony and cross-frequency interactions.
Project description:In this article, two dance educators offer a definition of rhythm from both educational and performance perspectives and discuss pedagogical practices that waken students' awareness to rhythm as a lived-experience over which they have creative control. For the dancer, in the midst of the dance, rhythms are, in the words of Margaret H'Doubler, recurring patterns of measured energy. These patterns are nested in scales from the moment-to-moment shifts in muscular contraction and release to the rise and fall of dramatic tension in a performed dance. This approach to rhythm runs counter to many dance students' studio-based training in which rhythm is equated to synchronizing accents to a specific meter. The authors describe pedagogical practices in the studio that foster engagement with rhythm as lived-experience. Drawing attention to their kinesthetic experience while moving, students are encouraged to modulate levels of exertion embedded in the qualities of movement they are experiencing. As varying levels of exertion are attended to across temporal durations, students notice patterns as they emerge and recur. This attention to recurring patterns of measured exertion is, the authors claim, the lived-experience of rhythm in dance.
Project description:This paper employs a novel research design to examine changes in empathy and closeness in partnered face-to-face dance, considering both different types of rhythm (regular, irregular, and no external rhythm, or 'mutual entrainment only') and different types of coupling (visual only, haptic only, and full visual and haptic coupling). Two studies were undertaken to pilot the design. In both studies, the Interpersonal Reactivity Index and Inclusion of Other in the Self were used to measure empathy and closeness, respectively. Study 1 employed 24 participants (12 pairs) distributed across two rhythm conditions, external regular rhythm, and no external rhythm, with full coupling in both conditions. Closeness increased similarly in both conditions. Empathic concern (EC) was significantly affected in the 'no rhythm' condition. Study 2 employed 54 participants assigned to form pairs and distributed across all combinations of rhythm and coupling types. Closeness decreased with irregular rhythm. EC increased in the 'no rhythm' conditions relative to regular rhythm. Fantasy (F) decreased with haptic coupling only (no visual coupling) while personal distress (PD) increased. In addition, the analyses suggest that perspective taking (PT) increases with irregular rhythm and in the condition without rhythm (mutual entrainment only). The discussion gauges the value of the designs and results for capturing changes in empathy and closeness with different rhythm and coupling types. Capturing such changes is important for research on the origins of dance in empathic mutual entrainment in the mother-infant dyad.
Project description:Lymphedema, a disfiguring condition characterized by an asymmetrical swelling of the limbs, is suspected to be caused by dysfunctions in the lymphatic system. A possible source of lymphatic dysfunction is the reduced mechanosensitivity of lymphangions, the spontaneously contracting units of the lymphatic system. In this study, the entrainment of lymphangions to an oscillatory wall shear stress (OWSS) is characterized in rat thoracic ducts in relation to their shear sensitivity. The critical shear stress above which the thoracic ducts show a substantial inhibition of contraction was found to be significantly negatively correlated to the diameter of the lymphangion. The entrainment of the lymphangion to an applied OWSS was found to be significantly dependent on the difference between the applied frequency and the intrinsic frequency of contraction of the lymphangion. The strength of the entrainment was also positively correlated to the applied shear stress when the applied shear was less than the critical shear stress of the vessel. The ejection fraction and fractional pump flow were also affected by the difference between the frequency of the applied OWSS and the vessel's intrinsic contraction frequency. The results suggest an adaptation of the lymphangion contractility to the existing oscillatory shear stress as a function of its intrinsic contractility and shear sensitivity. These adaptations might be crucial to ensure synchronized contraction of lymphangions through mechanosensitive means and might help explain the lymphatic dysfunctions that result from impaired mechanosensitivity.
Project description:Sensitivity of mechanical detection by the inner ear is dependent upon a highly nonlinear response to the applied stimulus. Here we show that a system of differential equations that support a subcritical Hopf bifurcation, with a feedback mechanism that tunes an internal control parameter, captures a wide range of experimental results. The proposed model reproduces the regime in which spontaneous hair bundle oscillations are bistable, with sporadic transitions between the oscillatory and the quiescent state. Furthermore, it is shown, both experimentally and theoretically, that the application of a high-amplitude stimulus to the bistable system can temporarily render it quiescent before recovery of the limit cycle oscillations. Finally, we demonstrate that the application of low-amplitude stimuli can entrain bundle motility either by mode-locking to the spontaneous oscillation or by mode-locking the transition between the quiescent and oscillatory states.
Project description:BackgroundNeuronal elements underlying perception, cognition, and action exhibit distinct oscillatory phenomena, measured in humans by electro- or magnetoencephalography (EEG/MEG). So far, the correlative or causal nature of the link between brain oscillations and functions has remained elusive. A compelling demonstration of causality would primarily generate oscillatory signatures that are known to correlate with particular cognitive functions and then assess the behavioral consequences. Here, we provide the first direct evidence for causal entrainment of brain oscillations by transcranial magnetic stimulation (TMS) using concurrent EEG.ResultsWe used rhythmic TMS bursts to directly interact with an MEG-identified parietal α-oscillator, activated by attention and linked to perception. With TMS bursts tuned to its preferred α-frequency (α-TMS), we confirmed the three main predictions of entrainment of a natural oscillator: (1) that α-oscillations are induced during α-TMS (reproducing an oscillatory signature of the stimulated parietal cortex), (2) that there is progressive enhancement of this α-activity (synchronizing the targeted, α-generator to the α-TMS train), and (3) that this depends on the pre-TMS phase of the background α-rhythm (entrainment of natural, ongoing α-oscillations). Control conditions testing different TMS burst profiles and TMS-EEG in a phantom head confirmed specificity of α-boosting to the case of synchronization between TMS train and neural oscillator.ConclusionsThe periodic electromagnetic force that is generated during rhythmic TMS can cause local entrainment of natural brain oscillations, emulating oscillatory signatures activated by cognitive tasks. This reveals a new mechanism of online TMS action on brain activity and can account for frequency-specific behavioral TMS effects at the level of biologically relevant rhythms.
Project description:The mammalian circadian timing system uses light to synchronize endogenously generated rhythms with the environmental day. Entrainment to schedules that deviate significantly from 24 h (T24) has been viewed as unlikely because the circadian pacemaker appears capable only of small, incremental responses to brief light exposures. Challenging this view, we demonstrate that simple manipulations of light alone induce extreme plasticity in the circadian system of mice. Firstly, exposure to dim nocturnal illumination (<0.1 lux), rather than completely dark nights, permits expression of an altered circadian waveform wherein mice in light/dark/light/dark (LDLD) cycles "bifurcate" their rhythms into two rest and activity intervals per 24 h. Secondly, this bifurcated state enables mice to adopt stable activity rhythms under 15 or 30 h days (LDLD T15/T30), well beyond conventional limits of entrainment. Continuation of dim light is unnecessary for T15/30 behavioral entrainment following bifurcation. Finally, neither dim light alone nor a shortened night is sufficient for the extraordinary entrainment observed under bifurcation. Thus, we demonstrate in a non-pharmacological, non-genetic manipulation that the circadian system is far more flexible than previously thought. These findings challenge the current conception of entrainment and its underlying principles, and reveal new potential targets for circadian interventions.
Project description:Parkinson's disease (PD) is associated with changes in neural activity in the sensorimotor alpha and beta bands. Using magnetoencephalography (MEG), we investigated the role of spontaneous neuronal activity within the somatosensory cortex in a large cohort of early- to mid-stage PD patients (N = 78) on Parkinsonian medication and age- and sex-matched healthy controls (N = 60) using source reconstructed resting-state MEG. We quantified features of the time series data in terms of oscillatory alpha power and central alpha frequency, beta power and central beta frequency, and 1/f broadband characteristics using power spectral density. Furthermore, we characterised transient oscillatory burst events in the mu-beta band time-domain signals. We examined the relationship between these signal features and the patients' disease state, symptom severity, age, sex, and cortical thickness. PD patients and healthy controls differed on PSD broadband characteristics, with PD patients showing a steeper 1/f exponential slope and higher 1/f offset. PD patients further showed a steeper age-related decrease in the burst rate. Out of all the signal features of the sensorimotor activity, the burst rate was associated with increased severity of bradykinesia, whereas the burst duration was associated with axial symptoms. Our study shows that general non-oscillatory features (broadband 1/f exponent and offset) of the sensorimotor signals are related to disease state and oscillatory burst rate scales with symptom severity in PD.
Project description:Ongoing brain oscillations (7-10 Hz) modulate visual perception; in particular, their precise phase can predict target perception. Here, we employ this phase-dependence of perception in a psychophysical experiment to track spatial properties of entrained oscillations of visual perception across the visual field. Is this entrainment local, or a more global phenomenon? If the latter, does oscillatory phase synchronize over space, or vary with increasing distance from the oscillatory source? We presented a disc stimulus in the upper left quadrant, oscillating in luminance at different frequencies (individual alpha frequency (IAF), 5 Hz, and 15 Hz) to entrain an oscillation with specific frequency and spatial origin. Observers fixated centrally, while flash stimuli at perceptual threshold appeared at different positions and times with respect to the oscillating stimulus. IAF and 5 Hz luminance oscillations modulated detection performance at all tested positions, whereas at 15 Hz, the effect was weaker and less consistent. Furthermore, for IAF and 5 Hz entrainment, preferred phases for target detection differed significantly between spatial locations, suggesting "local" entrainment of detection performance next to the oscillatory source, whereas more distant target locations shared a "global" effect with a significantly different phase. This unexpected global component of entrainment is tentatively attributed to widespread connectivity from thalamic nuclei such as the pulvinar.