Unknown

Dataset Information

0

Polydatin inhibits mast cell-mediated allergic inflammation by targeting PI3K/Akt, MAPK, NF-?B and Nrf2/HO-1 pathways.


ABSTRACT: Polydatin(PD) shows anti-allergic inflammatory effect, and this study investigated its underlying mechanisms in in vitro and in vivo models. IgE-mediated passive cutaneous anaphylaxis (PCA) and passive systemic anaphylaxis (PSA) models were used to confirm PD effect in vivo. Various signaling pathway proteins in mast cell were examined. RT-PCR, ELISA and western blotting were applied when appropriate. Activity of Lyn and Fyn kinases in vitro was measured using the Kinase Enzyme System. PD dose-dependently reduced the pigmentation of Evans blue in the PCA model and decreased the concentration of serum histamine in PSA model, and attenuated the degranulation of mast cells without generating cytotoxicity. PD decreased pro-inflammatory cytokine expression (TNF-?, IL-4, IL-1?, and IL-8). PD directly inhibited activity of Lyn and Syk kinases and down-regulated downstream signaling pathway including MAPK, PI3K/AKT and NF-kB. In addition, PD also targets Nrf2/HO-1 pathway to inhibit mast cell-derived allergic inflammatory reactions. In conclusion, the study demonstrates that PD is a possible therapeutic candidate for allergic inflammatory diseases. It directly inhibited activity of Lyn and Syk kinases and down-regulates the signaling pathway of MAPK, PI3K/AKT and NF-?B, and up-regulates the signaling pathway of Nrf2/HO-1 to inhibit the degranulation of mast cells.

SUBMITTER: Ye J 

PROVIDER: S-EPMC5605538 | biostudies-literature | 2017 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Polydatin inhibits mast cell-mediated allergic inflammation by targeting PI3K/Akt, MAPK, NF-κB and Nrf2/HO-1 pathways.

Ye Jing J   Piao Hongmei H   Jiang Jingzhi J   Jin Guangyu G   Zheng Mingyu M   Yang Jinshi J   Jin Xiang X   Sun Tianyi T   Choi Yun Ho YH   Li Liangchang L   Yan Guanghai G  

Scientific reports 20170919 1


Polydatin(PD) shows anti-allergic inflammatory effect, and this study investigated its underlying mechanisms in in vitro and in vivo models. IgE-mediated passive cutaneous anaphylaxis (PCA) and passive systemic anaphylaxis (PSA) models were used to confirm PD effect in vivo. Various signaling pathway proteins in mast cell were examined. RT-PCR, ELISA and western blotting were applied when appropriate. Activity of Lyn and Fyn kinases in vitro was measured using the Kinase Enzyme System. PD dose-d  ...[more]

Similar Datasets

| S-EPMC4536635 | biostudies-literature
| S-EPMC4417599 | biostudies-literature
| S-EPMC10618074 | biostudies-literature
| S-EPMC6230593 | biostudies-literature
| S-EPMC5282503 | biostudies-literature
| S-EPMC9258148 | biostudies-literature
| S-EPMC7070852 | biostudies-literature
| S-EPMC8873505 | biostudies-literature
| S-EPMC5999758 | biostudies-literature
| S-EPMC8881435 | biostudies-literature