Unknown

Dataset Information

0

Metagenomic Characterization of Candidatus Smithella cisternae Strain M82_1, a Syntrophic Alkane-Degrading Bacteria, Enriched from the Shengli Oil Field.


ABSTRACT: The methanogenic degradation of hydrocarbons plays an important role in hydrocarbon-contaminated environments in the absence of an external electron acceptor. Members of Syntrophaceae sublineages were previously reported to be responsible for syntrophic alkane degradation. However, limited information is currently available on their physiological capabilities in nature because it is very challenging to cultivate these as-yet uncultured microbes. We herein performed metagenomic sequencing of the methanogenic hexadecane-degrading culture M82 and recovered a nearly complete genome (2.75 Mb, estimated completeness ?97%) belonging to Syntrophaceae sublineage II. The assembly genome was tentatively named "Candidatus Smithella cisternae strain M82_1". Genes encoding alkylsuccinate synthase for alkane activation were identified, suggesting that this organism is capable of oxidizing alkanes through fumarate addition. This capability was further supported by the detection of methyl pentadecyl succinic acid and methyl tetradecyl succinic acid in cultures amended with hexadecane and pentadecane, respectively. Genes encoding enzymes for the ?-oxidation of long-chain fatty acids and butyrate were also identified. The electron transfer flavoprotein/DUF224 complex is presumed to link electron flow from acyl-CoA dehydrogenase to a membrane hydrogenase or formate dehydrogenase. Although no indications of Rnf complexes were detected, genes encoding electron-confurcating hydrogenase and formate dehydrogenase were proposed to couple the thermodynamically favorable oxidation of ferredoxin to generate H2 and formate from NADH. Strain M82_1 synthesized ATP from acetyl-CoA by substrate-level phosphorylation or F1F0-ATP synthases. These results provide an insight into the potential metabolic traits and ecophysiological roles of the syntrophic alkane degrader Syntrophaceae.

SUBMITTER: Qin QS 

PROVIDER: S-EPMC5606693 | biostudies-literature | 2017 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Metagenomic Characterization of Candidatus Smithella cisternae Strain M82_1, a Syntrophic Alkane-Degrading Bacteria, Enriched from the Shengli Oil Field.

Qin Qian-Shan QS   Feng Ding-Shan DS   Liu Peng-Fei PF   He Qiao Q   Li Xia X   Liu Ai-Ming AM   Zhang Hui H   Hu Guo-Quan GQ   Cheng Lei L  

Microbes and environments 20170805 3


The methanogenic degradation of hydrocarbons plays an important role in hydrocarbon-contaminated environments in the absence of an external electron acceptor. Members of Syntrophaceae sublineages were previously reported to be responsible for syntrophic alkane degradation. However, limited information is currently available on their physiological capabilities in nature because it is very challenging to cultivate these as-yet uncultured microbes. We herein performed metagenomic sequencing of the  ...[more]

Similar Datasets

| S-EPMC5017805 | biostudies-literature
| S-EPMC3806270 | biostudies-literature
| S-EPMC3423927 | biostudies-literature
| S-EPMC5102992 | biostudies-literature
| S-EPMC5849793 | biostudies-literature
| S-EPMC8459074 | biostudies-literature
| S-EPMC3688950 | biostudies-literature
| S-EPMC1838512 | biostudies-literature
| S-EPMC1352210 | biostudies-literature
| S-EPMC5628307 | biostudies-literature