Unknown

Dataset Information

0

Efficient representation of quantum many-body states with deep neural networks.


ABSTRACT: Part of the challenge for quantum many-body problems comes from the difficulty of representing large-scale quantum states, which in general requires an exponentially large number of parameters. Neural networks provide a powerful tool to represent quantum many-body states. An important open question is what characterizes the representational power of deep and shallow neural networks, which is of fundamental interest due to the popularity of deep learning methods. Here, we give a proof that, assuming a widely believed computational complexity conjecture, a deep neural network can efficiently represent most physical states, including the ground states of many-body Hamiltonians and states generated by quantum dynamics, while a shallow network representation with a restricted Boltzmann machine cannot efficiently represent some of those states.One of the challenges in studies of quantum many-body physics is finding an efficient way to record the large system wavefunctions. Here the authors present an analysis of the capabilities of recently-proposed neural network representations for storing physically accessible quantum states.

SUBMITTER: Gao X 

PROVIDER: S-EPMC5610197 | biostudies-literature | 2017 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Efficient representation of quantum many-body states with deep neural networks.

Gao Xun X   Duan Lu-Ming LM  

Nature communications 20170922 1


Part of the challenge for quantum many-body problems comes from the difficulty of representing large-scale quantum states, which in general requires an exponentially large number of parameters. Neural networks provide a powerful tool to represent quantum many-body states. An important open question is what characterizes the representational power of deep and shallow neural networks, which is of fundamental interest due to the popularity of deep learning methods. Here, we give a proof that, assum  ...[more]

Similar Datasets

| S-EPMC6294148 | biostudies-literature
| S-EPMC7010779 | biostudies-literature
| S-EPMC5228054 | biostudies-literature
| S-EPMC10325994 | biostudies-literature
| S-EPMC9584912 | biostudies-literature
| S-EPMC7870475 | biostudies-literature
| S-EPMC6959326 | biostudies-literature
| S-EPMC6874487 | biostudies-literature
| S-EPMC8786163 | biostudies-literature
| S-EPMC11364692 | biostudies-literature