Unknown

Dataset Information

0

A Cationic Polymer That Shows High Antifungal Activity against Diverse Human Pathogens.


ABSTRACT: Invasive fungal diseases are generally difficult to treat and often fatal. The therapeutic agents available to treat fungi are limited, and there is a critical need for new agents to combat these deadly infections. Antifungal compound development has been hindered by the challenge of creating agents that are highly active against fungal pathogens but not toxic to the host. Host defense peptides (HDPs) are produced by eukaryotes as a component of the innate immune response to pathogens and have served as inspiration for the development of many new antibacterial compounds. HDP mimics, however, have largely failed to exhibit potent and selective antifungal activity. Here, we present an HDP-like nylon-3 copolymer that is effective against diverse fungi while displaying only mild to moderate toxicity toward mammalian cells. This polymer is active on its own and in synergy with existing antifungal drugs against multiple species of Candida and Cryptococcus, reaching levels of efficacy comparable to those of the clinical agents amphotericin B and fluconazole in some cases. In addition, the polymer acts synergistically with azoles against different species of Aspergillus, including some azole-resistant strains. These findings indicate that nylon-3 polymers are a promising lead for development of new antifungal therapeutic strategies.

SUBMITTER: Rank LA 

PROVIDER: S-EPMC5610528 | biostudies-literature | 2017 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

A Cationic Polymer That Shows High Antifungal Activity against Diverse Human Pathogens.

Rank Leslie A LA   Walsh Naomi M NM   Liu Runhui R   Lim Fang Yun FY   Bok Jin Woo JW   Huang Mingwei M   Keller Nancy P NP   Gellman Samuel H SH   Hull Christina M CM  

Antimicrobial agents and chemotherapy 20170922 10


Invasive fungal diseases are generally difficult to treat and often fatal. The therapeutic agents available to treat fungi are limited, and there is a critical need for new agents to combat these deadly infections. Antifungal compound development has been hindered by the challenge of creating agents that are highly active against fungal pathogens but not toxic to the host. Host defense peptides (HDPs) are produced by eukaryotes as a component of the innate immune response to pathogens and have s  ...[more]

Similar Datasets

| S-EPMC11204650 | biostudies-literature
| S-EPMC6473702 | biostudies-literature
| S-EPMC4654976 | biostudies-literature
| S-EPMC6273781 | biostudies-literature
| S-EPMC3663488 | biostudies-literature
| S-EPMC7497472 | biostudies-literature
| S-EPMC6749435 | biostudies-literature
| S-EPMC9611468 | biostudies-literature
| S-EPMC89011 | biostudies-literature
| S-EPMC11370243 | biostudies-literature