Ontology highlight
ABSTRACT:
SUBMITTER: Lippert C
PROVIDER: S-EPMC5617305 | biostudies-literature | 2017 Sep
REPOSITORIES: biostudies-literature
Lippert Christoph C Sabatini Riccardo R Maher M Cyrus MC Kang Eun Yong EY Lee Seunghak S Arikan Okan O Harley Alena A Bernal Axel A Garst Peter P Lavrenko Victor V Yocum Ken K Wong Theodore T Zhu Mingfu M Yang Wen-Yun WY Chang Chris C Lu Tim T Lee Charlie W H CWH Hicks Barry B Ramakrishnan Smriti S Tang Haibao H Xie Chao C Piper Jason J Brewerton Suzanne S Turpaz Yaron Y Telenti Amalio A Roby Rhonda K RK Och Franz J FJ Venter J Craig JC
Proceedings of the National Academy of Sciences of the United States of America 20170905 38
Prediction of human physical traits and demographic information from genomic data challenges privacy and data deidentification in personalized medicine. To explore the current capabilities of phenotype-based genomic identification, we applied whole-genome sequencing, detailed phenotyping, and statistical modeling to predict biometric traits in a cohort of 1,061 participants of diverse ancestry. Individually, for a large fraction of the traits, their predictive accuracy beyond ancestry and demogr ...[more]