Unknown

Dataset Information

0

A High-throughput Assay for mRNA Silencing in Primary Cortical Neurons in vitro with Oligonucleotide Therapeutics.


ABSTRACT: Primary neurons represent an ideal cellular system for the identification of therapeutic oligonucleotides for the treatment of neurodegenerative diseases. However, due to the sensitive nature of primary cells, the transfection of small interfering RNAs (siRNA) using classical methods is laborious and often shows low efficiency. Recent progress in oligonucleotide chemistry has enabled the development of stabilized and hydrophobically modified small interfering RNAs (hsiRNAs). This new class of oligonucleotide therapeutics shows extremely efficient self-delivery properties and supports potent and durable effects in vitro and in vivo. We have developed a high-throughput in vitro assay to identify and test hsiRNAs in primary neuronal cultures. To simply, rapidly, and accurately quantify the mRNA silencing of hundreds of hsiRNAs, we use the QuantiGene 2.0 quantitative gene expression assay. This high-throughput, 96-well plate-based assay can quantify mRNA levels directly from sample lysate. Here, we describe a method to prepare short-term cultures of mouse primary cortical neurons in a 96-well plate format for high-throughput testing of oligonucleotide therapeutics. This method supports the testing of hsiRNA libraries and the identification of potential therapeutics within just two weeks. We detail methodologies of our high throughput assay workflow from primary neuron preparation to data analysis. This method can help identify oligonucleotide therapeutics for treatment of various neurological diseases.

SUBMITTER: Alterman JF 

PROVIDER: S-EPMC5621760 | biostudies-literature | 2017 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

A High-throughput Assay for mRNA Silencing in Primary Cortical Neurons <i>in vitro</i> with Oligonucleotide Therapeutics.

Alterman Julia F JF   Coles Andrew H AH   Hall Lauren M LM   Aronin Neil N   Khvorova Anastasia A   Didiot Marie-Cécile MC  

Bio-protocol 20170801 16


Primary neurons represent an ideal cellular system for the identification of therapeutic oligonucleotides for the treatment of neurodegenerative diseases. However, due to the sensitive nature of primary cells, the transfection of small interfering RNAs (siRNA) using classical methods is laborious and often shows low efficiency. Recent progress in oligonucleotide chemistry has enabled the development of stabilized and hydrophobically modified small interfering RNAs (hsiRNAs). This new class of ol  ...[more]

Similar Datasets

| S-EPMC9991926 | biostudies-literature
| S-EPMC9336219 | biostudies-literature
| S-EPMC5347017 | biostudies-literature
| S-EPMC4890880 | biostudies-literature
| S-EPMC7561570 | biostudies-literature
| S-EPMC10778287 | biostudies-literature
| S-EPMC212822 | biostudies-literature
2022-11-14 | E-MTAB-11575 | biostudies-arrayexpress
2022-11-14 | E-MTAB-11572 | biostudies-arrayexpress
| S-EPMC8673547 | biostudies-literature