Unknown

Dataset Information

0

Spatial distribution of disease-associated variants in three-dimensional structures of protein complexes.


ABSTRACT: Next-generation sequencing enables simultaneous analysis of hundreds of human genomes associated with a particular phenotype, for example, a disease. These genomes naturally contain a lot of sequence variation that ranges from single-nucleotide variants (SNVs) to large-scale structural rearrangements. In order to establish a functional connection between genotype and disease-associated phenotypes, one needs to distinguish disease drivers from neutral passenger variants. Functional annotation based on experimental assays is feasible only for a limited number of candidate mutations. Thus alternative computational tools are needed. A possible approach to annotating mutations functionally is to consider their spatial location relative to functionally relevant sites in three-dimensional (3D) structures of the harboring proteins. This is impeded by the lack of available protein 3D structures. Complementing experimentally resolved structures with reliable computational models is an attractive alternative. We developed a structure-based approach to characterizing comprehensive sets of non-synonymous single-nucleotide variants (nsSNVs): associated with cancer, non-cancer diseases and putatively functionally neutral. We searched experimentally resolved protein 3D structures for potential homology-modeling templates for proteins harboring corresponding mutations. We found such templates for all proteins with disease-associated nsSNVs, and 51 and 66% of proteins carrying common polymorphisms and annotated benign variants. Many mutations caused by nsSNVs can be found in protein-protein, protein-nucleic acid or protein-ligand complexes. Correction for the number of available templates per protein reveals that protein-protein interaction interfaces are not enriched in either cancer nsSNVs, or nsSNVs associated with non-cancer diseases. Whereas cancer-associated mutations are enriched in DNA-binding proteins, they are rarely located directly in DNA-interacting interfaces. In contrast, mutations associated with non-cancer diseases are in general rare in DNA-binding proteins, but enriched in DNA-interacting interfaces in these proteins. All disease-associated nsSNVs are overrepresented in ligand-binding pockets, and nsSNVs associated with non-cancer diseases are additionally enriched in protein core, where they probably affect overall protein stability.

SUBMITTER: Gress A 

PROVIDER: S-EPMC5623905 | biostudies-literature | 2017 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Spatial distribution of disease-associated variants in three-dimensional structures of protein complexes.

Gress A A   Ramensky V V   Kalinina O V OV  

Oncogenesis 20170925 9


Next-generation sequencing enables simultaneous analysis of hundreds of human genomes associated with a particular phenotype, for example, a disease. These genomes naturally contain a lot of sequence variation that ranges from single-nucleotide variants (SNVs) to large-scale structural rearrangements. In order to establish a functional connection between genotype and disease-associated phenotypes, one needs to distinguish disease drivers from neutral passenger variants. Functional annotation bas  ...[more]

Similar Datasets

| S-EPMC4766099 | biostudies-literature
| S-EPMC6602437 | biostudies-literature
| S-EPMC4880911 | biostudies-literature
| S-EPMC8997344 | biostudies-literature
| S-EPMC5985282 | biostudies-literature
| S-EPMC4534760 | biostudies-literature
| S-EPMC3194195 | biostudies-literature
| S-EPMC38674 | biostudies-literature
| S-EPMC6802138 | biostudies-literature
| S-EPMC4776043 | biostudies-literature