Unknown

Dataset Information

0

ConfFuse: High-Confidence Fusion Gene Detection across Tumor Entities.


ABSTRACT: Background: Fusion genes play an important role in the tumorigenesis of many cancers. Next-generation sequencing (NGS) technologies have been successfully applied in fusion gene detection for the last several years, and a number of NGS-based tools have been developed for identifying fusion genes during this period. Most fusion gene detection tools based on RNA-seq data report a large number of candidates (mostly false positives), making it hard to prioritize candidates for experimental validation and further analysis. Selection of reliable fusion genes for downstream analysis becomes very important in cancer research. We therefore developed confFuse, a scoring algorithm to reliably select high-confidence fusion genes which are likely to be biologically relevant. Results: confFuse takes multiple parameters into account in order to assign each fusion candidate a confidence score, of which score ?8 indicates high-confidence fusion gene predictions. These parameters were manually curated based on our experience and on certain structural motifs of fusion genes. Compared with alternative tools, based on 96 published RNA-seq samples from different tumor entities, our method can significantly reduce the number of fusion candidates (301 high-confidence from 8,083 total predicted fusion genes) and keep high detection accuracy (recovery rate 85.7%). Validation of 18 novel, high-confidence fusions detected in three breast tumor samples resulted in a 100% validation rate. Conclusions: confFuse is a novel downstream filtering method that allows selection of highly reliable fusion gene candidates for further downstream analysis and experimental validations. confFuse is available at https://github.com/Zhiqin-HUANG/confFuse.

SUBMITTER: Huang Z 

PROVIDER: S-EPMC5627533 | biostudies-literature | 2017

REPOSITORIES: biostudies-literature

altmetric image

Publications

confFuse: High-Confidence Fusion Gene Detection across Tumor Entities.

Huang Zhiqin Z   Jones David T W DTW   Wu Yonghe Y   Lichter Peter P   Zapatka Marc M  

Frontiers in genetics 20170929


<b>Background:</b> Fusion genes play an important role in the tumorigenesis of many cancers. Next-generation sequencing (NGS) technologies have been successfully applied in fusion gene detection for the last several years, and a number of NGS-based tools have been developed for identifying fusion genes during this period. Most fusion gene detection tools based on RNA-seq data report a large number of candidates (mostly false positives), making it hard to prioritize candidates for experimental va  ...[more]

Similar Datasets

| S-EPMC4445815 | biostudies-literature
| S-EPMC9112324 | biostudies-literature
| S-EPMC7490989 | biostudies-literature
2017-04-01 | GSE97211 | GEO
| S-EPMC3968151 | biostudies-literature
| S-EPMC5737606 | biostudies-literature
2021-05-31 | E-MTAB-9818 | biostudies-arrayexpress
| S-EPMC3619374 | biostudies-literature
| S-EPMC10111484 | biostudies-literature
| S-EPMC8469567 | biostudies-literature