Unknown

Dataset Information

0

Perhydrohelicenes and other diamond-lattice based hydrocarbons: the choreography of inversion.


ABSTRACT: Overall inversion in fused cyclohexane oligomers 2, 3, and 4 (all based on cis-decalin 1) occurs by a rolling process involving no more than two adjacent rings in twist-boat conformations at any time. These inverting rings move along the oligomer in processes that are precisely choreographed by the adjacent chairs. Actual inversion mechanisms can be stepwise [CC ? TC ? TT ? C'T ? C'C'], as for cis-decalin, but it is shown that a concerted alternative [CC ? TC ? C'T ? C'C'] is enforced in 2. The all-cis,anti,cis-isomers of perhydrohelicenes 4 are based on the diamond lattice and have remarkably low strain energies. Helix inversion in 4 is compared with that in helicenes 5. For both, the intermediates and transition states have shapes broadly like kinked old-style telephone cables. In both cases barriers increase with the length of the system to eventually reach a plateau value of ca. 120 kJ mol-1 for 4, much lower than that for 5 (320-350 kJ mol-1). While rolling inversion only requires two adjacent rings in twist-boat conformations at any instant, inversion in propellane 6 requires all three rings be converted to twist-boats, and the S4 symmetric hydrocarbon 7 requires all four rings to be converted to twist-boats. As a consequence, 7 probably has the highest barrier of any non-oligomeric cis-decalin derived structure (87.3 kJ mol-1 at B3LYP/6-31G*).

SUBMITTER: Alder RW 

PROVIDER: S-EPMC5628603 | biostudies-literature | 2017 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Perhydrohelicenes and other diamond-lattice based hydrocarbons: the choreography of inversion.

Alder Roger W RW   Butts Craig P CP   Sessions Richard B RB  

Chemical science 20170717 9


Overall inversion in fused cyclohexane oligomers <b>2</b>, <b>3</b>, and <b>4</b> (all based on <i>cis</i>-decalin <b>1</b>) occurs by a rolling process involving no more than two adjacent rings in twist-boat conformations at any time. These inverting rings move along the oligomer in processes that are precisely choreographed by the adjacent chairs. Actual inversion mechanisms can be stepwise [CC → TC → TT → C'T → C'C'], as for <i>cis</i>-decalin, but it is shown that a concerted alternative [CC  ...[more]

Similar Datasets

| S-EPMC3179102 | biostudies-literature
| S-EPMC5442357 | biostudies-literature
| S-EPMC6060054 | biostudies-literature
| S-EPMC1401506 | biostudies-literature
| S-EPMC6970175 | biostudies-literature
| S-EPMC9728959 | biostudies-literature
| S-EPMC10482348 | biostudies-literature
| S-EPMC4650591 | biostudies-other
| S-EPMC6092630 | biostudies-literature
| S-EPMC7299174 | biostudies-literature