Unknown

Dataset Information

0

Ultrathin thermoresponsive self-folding 3D graphene.


ABSTRACT: Graphene and other two-dimensional materials have unique physical and chemical properties of broad relevance. It has been suggested that the transformation of these atomically planar materials to three-dimensional (3D) geometries by bending, wrinkling, or folding could significantly alter their properties and lead to novel structures and devices with compact form factors, but strategies to enable this shape change remain limited. We report a benign thermally responsive method to fold and unfold monolayer graphene into predesigned, ordered 3D structures. The methodology involves the surface functionalization of monolayer graphene using ultrathin noncovalently bonded mussel-inspired polydopamine and thermoresponsive poly(N-isopropylacrylamide) brushes. The functionalized graphene is micropatterned and self-folds into ordered 3D structures with reversible deformation under a full control by temperature. The structures are characterized using spectroscopy and microscopy, and self-folding is rationalized using a multiscale molecular dynamics model. Our work demonstrates the potential to design and fabricate ordered 3D graphene structures with predictable shape and dynamics. We highlight applicability by encapsulating live cells and creating nonlinear resistor and creased transistor devices.

SUBMITTER: Xu W 

PROVIDER: S-EPMC5630237 | biostudies-literature | 2017 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Ultrathin thermoresponsive self-folding 3D graphene.

Xu Weinan W   Qin Zhao Z   Chen Chun-Teh CT   Kwag Hye Rin HR   Ma Qinli Q   Sarkar Anjishnu A   Buehler Markus J MJ   Gracias David H DH  

Science advances 20171006 10


Graphene and other two-dimensional materials have unique physical and chemical properties of broad relevance. It has been suggested that the transformation of these atomically planar materials to three-dimensional (3D) geometries by bending, wrinkling, or folding could significantly alter their properties and lead to novel structures and devices with compact form factors, but strategies to enable this shape change remain limited. We report a benign thermally responsive method to fold and unfold  ...[more]

Similar Datasets

| S-EPMC6432654 | biostudies-literature
| S-EPMC4562068 | biostudies-literature
| S-EPMC7654509 | biostudies-literature
| S-EPMC5667682 | biostudies-literature
| S-EPMC2614779 | biostudies-literature
| S-EPMC11217268 | biostudies-literature
| S-EPMC6640968 | biostudies-literature
| S-EPMC5852161 | biostudies-other
| S-EPMC5806626 | biostudies-literature
| S-EPMC7536133 | biostudies-literature