Ontology highlight
ABSTRACT: Objective
To use administrative medical claims data to identify patients with incident Parkinson disease (PD) prior to diagnosis.Methods
Using a population-based case-control study of incident PD in 2009 among Medicare beneficiaries aged 66-90 years (89,790 cases, 118,095 controls) and the elastic net algorithm, we developed a cross-validated model for predicting PD using only demographic data and 2004-2009 Medicare claims data. We then compared this model to more basic models containing only demographic data and diagnosis codes for constipation, taste/smell disturbance, and REM sleep behavior disorder, using each model's receiver operator characteristic area under the curve (AUC).Results
We observed all established associations between PD and age, sex, race/ethnicity, tobacco smoking, and the above medical conditions. A model with those predictors had an AUC of only 0.670 (95% confidence interval [CI] 0.668-0.673). In contrast, the AUC for a predictive model with 536 diagnosis and procedure codes was 0.857 (95% CI 0.855-0.859). At the optimal cut point, sensitivity was 73.5% and specificity was 83.2%.Conclusions
Using only demographic data and selected diagnosis and procedure codes readily available in administrative claims data, it is possible to identify individuals with a high probability of eventually being diagnosed with PD.
SUBMITTER: Searles Nielsen S
PROVIDER: S-EPMC5631173 | biostudies-literature | 2017 Oct
REPOSITORIES: biostudies-literature
Searles Nielsen Susan S Warden Mark N MN Camacho-Soto Alejandra A Willis Allison W AW Wright Brenton A BA Racette Brad A BA
Neurology 20170901 14
<h4>Objective</h4>To use administrative medical claims data to identify patients with incident Parkinson disease (PD) prior to diagnosis.<h4>Methods</h4>Using a population-based case-control study of incident PD in 2009 among Medicare beneficiaries aged 66-90 years (89,790 cases, 118,095 controls) and the elastic net algorithm, we developed a cross-validated model for predicting PD using only demographic data and 2004-2009 Medicare claims data. We then compared this model to more basic models co ...[more]