Multiobjective differential evolution-based multifactor dimensionality reduction for detecting gene-gene interactions.
Ontology highlight
ABSTRACT: Epistasis within disease-related genes (gene-gene interactions) was determined through contingency table measures based on multifactor dimensionality reduction (MDR) using single-nucleotide polymorphisms (SNPs). Most MDR-based methods use the single contingency table measure to detect gene-gene interactions; however, some gene-gene interactions may require identification through multiple contingency table measures. In this study, a multiobjective differential evolution method (called MODEMDR) was proposed to merge the various contingency table measures based on MDR to detect significant gene-gene interactions. Two contingency table measures, namely the correct classification rate and normalized mutual information, were selected to design the fitness functions in MODEMDR. The characteristics of multiobjective optimization enable MODEMDR to use multiple measures to efficiently and synchronously detect significant gene-gene interactions within a reasonable time frame. Epistatic models with and without marginal effects under various parameter settings (heritability and minor allele frequencies) were used to assess existing methods by comparing the detection success rates of gene-gene interactions. The results of the simulation datasets show that MODEMDR is superior to existing methods. Moreover, a large dataset obtained from the Wellcome Trust Case Control Consortium was used to assess MODEMDR. MODEMDR exhibited efficiency in identifying significant gene-gene interactions in genome-wide association studies.
SUBMITTER: Yang CH
PROVIDER: S-EPMC5634479 | biostudies-literature | 2017 Oct
REPOSITORIES: biostudies-literature
ACCESS DATA