Unknown

Dataset Information

0

Evaluation of TSPO PET Ligands [18F]VUIIS1009A and [18F]VUIIS1009B: Tracers for Cancer Imaging.


ABSTRACT: PURPOSE:Positron emission tomography (PET) ligands targeting translocator protein (TSPO) are potential imaging diagnostics of cancer. In this study, we report two novel, high-affinity TSPO PET ligands that are 5,7 regioisomers, [18F]VUIIS1009A ([18F]3A) and [18F]VUIIS1009B ([18F]3B), and their initial in vitro and in vivo evaluation in healthy mice and glioma-bearing rats. PROCEDURES:VUIIS1009A/B was synthesized and confirmed by X-ray crystallography. Interactions between TSPO binding pocket and novel ligands were evaluated and compared with contemporary TSPO ligands using 2D 1H-15N heteronuclear single quantum coherence (HSQC) spectroscopy. In vivo biodistribution of [18F]VUIIS1009A and [18F]VUIIS1009B was carried out in healthy mice with and without radioligand displacement. Dynamic PET imaging data were acquired simultaneously with [18F]VUIIS1009A/B injections in glioma-bearing rats, with binding reversibility and specificity evaluated by radioligand displacement. In vivo radiometabolite analysis was performed using radio-TLC, and quantitative analysis of PET data was performed using metabolite-corrected arterial input functions. Imaging was validated with histology and immunohistochemistry. RESULTS:Both VUIIS1009A (3A) and VUIIS1009B (3B) were found to exhibit exceptional binding affinity to TSPO, with observed IC50 values against PK11195 approximately 500-fold lower than DPA-714. However, HSQC NMR suggested that VUIIS1009A and VUIIS1009B share a common binding pocket within mammalian TSPO (mTSPO) as DPA-714 and to a lesser extent, PK11195. [18F]VUIIS1009A ([18F]3A) and [18F]VUIIS1009B ([18F]3B) exhibited similar biodistribution in healthy mice. In rats bearing C6 gliomas, both [18F]VUIIS1009A and [18F]VUIIS1009B exhibited greater binding potential (k 3/k 4)in tumor tissue compared to [18F]DPA-714. Interestingly, [18F]VUIIS1009B exhibited significantly greater tumor uptake (V T) than [18F]VUIIS1009A, which was attributed primarily to greater plasma-to-tumor extraction efficiency. CONCLUSIONS:The novel PET ligand [18F]VUIIS1009B exhibits promising characteristics for imaging glioma; its superiority over [18F]VUIIS1009A, a regioisomer, appears to be primarily due to improved plasma extraction efficiency. Continued evaluation of [18F]VUIIS1009B as a high-affinity TSPO PET ligand for precision medicine appears warranted.

SUBMITTER: Tang D 

PROVIDER: S-EPMC5634614 | biostudies-literature | 2017 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Evaluation of TSPO PET Ligands [<sup>18</sup>F]VUIIS1009A and [<sup>18</sup>F]VUIIS1009B: Tracers for Cancer Imaging.

Tang Dewei D   Li Jun J   Buck Jason R JR   Tantawy Mohamed Noor MN   Xia Yan Y   Harp Joel M JM   Nickels Michael L ML   Meiler Jens J   Manning H Charles HC  

Molecular imaging and biology 20170801 4


<h4>Purpose</h4>Positron emission tomography (PET) ligands targeting translocator protein (TSPO) are potential imaging diagnostics of cancer. In this study, we report two novel, high-affinity TSPO PET ligands that are 5,7 regioisomers, [<sup>18</sup>F]VUIIS1009A ([<sup>18</sup>F]3A) and [<sup>18</sup>F]VUIIS1009B ([<sup>18</sup>F]3B), and their initial in vitro and in vivo evaluation in healthy mice and glioma-bearing rats.<h4>Procedures</h4>VUIIS1009A/B was synthesized and confirmed by X-ray cr  ...[more]

Similar Datasets

| S-EPMC9697781 | biostudies-literature
| S-EPMC4018113 | biostudies-literature
| S-EPMC10382351 | biostudies-literature
| S-EPMC6454078 | biostudies-literature
| S-EPMC7814958 | biostudies-literature
| S-EPMC5693838 | biostudies-literature
| S-EPMC7966678 | biostudies-literature
| S-EPMC7415805 | biostudies-literature
| S-EPMC5323493 | biostudies-literature
| S-EPMC11231114 | biostudies-literature