Role of p38-MAPK pathway in the effects of high-magnitude compression on nucleus pulposus cell senescence in a disc perfusion culture.
Ontology highlight
ABSTRACT: Nucleus pulposus (NP) cell senescence is a typical pathological feature within the degenerative intervertebral disc. As a potential inducing and aggregating factor of disc degeneration, mechanical overloading affects disc biology in multiple ways. The present study was to investigate the NP cell senescence-associated phenotype under intermittent high compression in an ex vivo disc bioreactor culture, and the role of the p38-MAPK pathway in this regulatory process. Porcine discs were cultured in culture chambers of a self-developed mechanically active bioreactor and subjected to different magnitudes of dynamic compression (low-magnitude and high-magnitude: 0.1 and 1.3 MPa at a frequency of 1.0 Hz for 2 h per day respectively) for 7 days. Non-compressed discs were used as controls. The inhibitor SB203580 was used to study the role of the p38-MAPK pathway in this process. Results showed that intermittent high-magnitude compression clearly induced senescence-associated changes in NP cells, such as increasing ?-galactosidase-positive NP cells, decreasing PCNA-positive NP cells, promoting the formation of senescence-associated heterochromatic foci (SAHF), up-regulating the expression of senescence markers (p16 and p53), and attenuating matrix production. However, inhibition of the p38-MAPK pathway partly attenuated the effects of intermittent high-magnitude (1.3 MPa) compression on those described NP cell senescence-associated parameters. In conclusion, intermittent high-magnitude compression can induce NP cell senescence-associated changes in an ex vivo disc bioreactor culture, and the p38-MAPK pathway is involved in this process.
SUBMITTER: Pang L
PROVIDER: S-EPMC5635211 | biostudies-literature | 2017 Oct
REPOSITORIES: biostudies-literature
ACCESS DATA