Unknown

Dataset Information

0

Genomic divergence within non-photosynthetic cyanobacterial endosymbionts in rhopalodiacean diatoms.


ABSTRACT: Organelle acquisitions via endosymbioses with prokaryotes were milestones in the evolution of eukaryotes. Still, quite a few uncertainties have remained for the evolution in the early stage of organellogenesis. In this respect, rhopalodiacean diatoms and their obligate cyanobacterial endosymbionts, called spheroid bodies, are emerging as new models for the study of organellogenesis. The genome for the spheroid body of Epithemia turgida, a rhopalodiacean diatom, has unveiled its unique metabolic nature lacking the photosynthetic ability. Nevertheless, the genome sequence of a spheroid body from a single lineage may not be sufficient to depict the evolution of these cyanobacterium-derived intracellular structures as a whole. Here, we report on the complete genome for the spheroid body of Rhopalodia gibberula, a lineage distinct from E. turgida, of which genome has been fully determined. Overall, features in genome structure and metabolic capacity, including a lack of photosynthetic ability, were highly conserved between the two spheroid bodies. However, our comparative genomic analyses revealed that the genome of the R. gibberula spheroid body exhibits a lower non-synonymous substitution rate and a slower progression of pseudogenisation than those of E. turgida, suggesting that a certain degree of diversity exists amongst the genomes of obligate endosymbionts in unicellular eukaryotes.

SUBMITTER: Nakayama T 

PROVIDER: S-EPMC5638926 | biostudies-literature | 2017 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Genomic divergence within non-photosynthetic cyanobacterial endosymbionts in rhopalodiacean diatoms.

Nakayama Takuro T   Inagaki Yuji Y  

Scientific reports 20171012 1


Organelle acquisitions via endosymbioses with prokaryotes were milestones in the evolution of eukaryotes. Still, quite a few uncertainties have remained for the evolution in the early stage of organellogenesis. In this respect, rhopalodiacean diatoms and their obligate cyanobacterial endosymbionts, called spheroid bodies, are emerging as new models for the study of organellogenesis. The genome for the spheroid body of Epithemia turgida, a rhopalodiacean diatom, has unveiled its unique metabolic  ...[more]

Similar Datasets

| S-EPMC7769462 | biostudies-literature
| S-EPMC8415285 | biostudies-literature
| S-EPMC5777044 | biostudies-literature
| S-EPMC5877343 | biostudies-literature
| S-EPMC8388370 | biostudies-literature
| S-EPMC5683893 | biostudies-literature
| S-EPMC2078611 | biostudies-literature
| S-EPMC5895044 | biostudies-literature
| S-EPMC3245544 | biostudies-literature
| S-EPMC5748208 | biostudies-literature