Unknown

Dataset Information

0

Conjugation of ?BT1-derived integrative plasmid pDZL802 in Amycolatopsis mediterranei U32.


ABSTRACT: The genus Amycolatopsis is well known for its ability to produce antibiotics, and an increasing number of valuable biotechnological applications, such as bioremediation, biodegradation, bioconversion, and potentially biofuel, that use this genus have been developed. Amycolatopsis mediterranei is an industrial-scale producer of the important antibiotic rifamycin, which plays a vital role in antimycobacterial therapy. Genetic studies of Amycolatopsis species have progressed slowly due to the lack of efficient transformation methods and stable plasmid vectors. In A. mediterranei U32, electroporation and replicable plasmid vectors have been developed. Here, we establish a simple and efficient conjugal system by transferring integrative plasmid pDZL802 from ET12567 (pUZ8002) to A. mediterranei U32, with an efficiency of 4 × 10-5 CFU per recipient cell. This integrative vector, based on the ?BT1 int-attP locus, is a stable and versatile tool for A. mediterranei U32, and it may also be applicable to various other Amycolatopsis species for strain improvement, heterologous protein expression, and synthetic biology experiments.

SUBMITTER: Li C 

PROVIDER: S-EPMC5639847 | biostudies-literature | 2017 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Conjugation of ϕBT1-derived integrative plasmid pDZL802 in Amycolatopsis mediterranei U32.

Li Chen C   Zhou Li L   Wang Ying Y   Zhao Guoping G   Ding Xiaoming X  

Bioengineered 20170103 5


The genus Amycolatopsis is well known for its ability to produce antibiotics, and an increasing number of valuable biotechnological applications, such as bioremediation, biodegradation, bioconversion, and potentially biofuel, that use this genus have been developed. Amycolatopsis mediterranei is an industrial-scale producer of the important antibiotic rifamycin, which plays a vital role in antimycobacterial therapy. Genetic studies of Amycolatopsis species have progressed slowly due to the lack  ...[more]

Similar Datasets

| S-EPMC7332547 | biostudies-literature
| S-EPMC7563148 | biostudies-literature
| S-EPMC8301457 | biostudies-literature
| PRJNA43575 | ENA
| PRJNA1091067 | ENA
| S-EPMC3187414 | biostudies-literature
| S-EPMC5377510 | biostudies-literature
| S-EPMC4132629 | biostudies-literature
| S-EPMC5787919 | biostudies-literature
| PRJNA170006 | ENA