Unknown

Dataset Information

0

Integrating networks and comparative genomics reveals retroelement proliferation dynamics in hominid genomes.


ABSTRACT: Retroelements (REs) are mobile DNA sequences that multiply and spread throughout genomes by a copy-and-paste mechanism. These parasitic elements are active in diverse genomes, from yeast to humans, where they promote diversity, cause disease, and accelerate evolution. Because of their high copy number and sequence similarity, studying their activity and tracking their proliferation dynamics is a challenge. It is particularly difficult to pinpoint the few REs in a genome that are still active in the haystack of degenerate and suppressed elements. We develop a computational framework based on network theory that tracks the path of RE proliferation throughout evolution. We analyze SVA (SINE-VNTR-Alu), the youngest RE family in human genomes, to understand RE dynamics across hominids. Integrating comparative genomics and network tools enables us to track the course of SVA proliferation, identify yet unknown active communities, and detect tentative "master REs" that played key roles in SVA propagation, providing strong support for the fundamental "master gene" model of RE proliferation. The method is generic and thus can be applied to REs of any of the thousands of available genomes to identify active RE communities and master REs that were pivotal in the evolution of their host genomes.

SUBMITTER: Levy O 

PROVIDER: S-EPMC5640379 | biostudies-literature | 2017 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Integrating networks and comparative genomics reveals retroelement proliferation dynamics in hominid genomes.

Levy Orr O   Knisbacher Binyamin A BA   Levanon Erez Y EY   Havlin Shlomo S  

Science advances 20171013 10


Retroelements (REs) are mobile DNA sequences that multiply and spread throughout genomes by a copy-and-paste mechanism. These parasitic elements are active in diverse genomes, from yeast to humans, where they promote diversity, cause disease, and accelerate evolution. Because of their high copy number and sequence similarity, studying their activity and tracking their proliferation dynamics is a challenge. It is particularly difficult to pinpoint the few REs in a genome that are still active in  ...[more]

Similar Datasets

| S-EPMC4578762 | biostudies-literature
| S-EPMC9797194 | biostudies-literature
| S-EPMC11009112 | biostudies-literature
| S-EPMC7602945 | biostudies-literature
| S-EPMC4141962 | biostudies-literature
| S-EPMC6286560 | biostudies-literature
2015-06-05 | GSE68588 | GEO
| S-EPMC1314883 | biostudies-literature
2015-06-05 | E-GEOD-68588 | biostudies-arrayexpress
| S-EPMC5499648 | biostudies-literature