Unknown

Dataset Information

0

Experimental certification of millions of genuinely entangled atoms in a solid.


ABSTRACT: Quantum theory predicts that entanglement can also persist in macroscopic physical systems, albeit difficulties to demonstrate it experimentally remain. Recently, significant progress has been achieved and genuine entanglement between up to 2900 atoms was reported. Here, we demonstrate 16 million genuinely entangled atoms in a solid-state quantum memory prepared by the heralded absorption of a single photon. We develop an entanglement witness for quantifying the number of genuinely entangled particles based on the collective effect of directed emission combined with the non-classical nature of the emitted light. The method is applicable to a wide range of physical systems and is effective even in situations with significant losses. Our results clarify the role of multipartite entanglement in ensemble-based quantum memories and demonstrate the accessibility to certain classes of multipartite entanglement with limited experimental control.The presence of entanglement in macroscopic systems is notoriously difficult to observe. Here, the authors develop a witness which allow them to demonstrate entanglement between millions of atoms in a solid-state quantum memory prepared by the heralded absorption of a single photon.

SUBMITTER: Frowis F 

PROVIDER: S-EPMC5640624 | biostudies-literature | 2017 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Experimental certification of millions of genuinely entangled atoms in a solid.

Fröwis Florian F   Strassmann Peter C PC   Tiranov Alexey A   Gut Corentin C   Lavoie Jonathan J   Brunner Nicolas N   Bussières Félix F   Afzelius Mikael M   Gisin Nicolas N  

Nature communications 20171013 1


Quantum theory predicts that entanglement can also persist in macroscopic physical systems, albeit difficulties to demonstrate it experimentally remain. Recently, significant progress has been achieved and genuine entanglement between up to 2900 atoms was reported. Here, we demonstrate 16 million genuinely entangled atoms in a solid-state quantum memory prepared by the heralded absorption of a single photon. We develop an entanglement witness for quantifying the number of genuinely entangled par  ...[more]

Similar Datasets

| S-EPMC10491222 | biostudies-literature
| S-EPMC8113235 | biostudies-literature
| S-EPMC3909907 | biostudies-other
| S-EPMC5719363 | biostudies-literature
| S-EPMC4837480 | biostudies-literature
| S-EPMC4070742 | biostudies-other
| S-EPMC4506543 | biostudies-other
| S-EPMC10941235 | biostudies-literature
| S-EPMC4256073 | biostudies-literature
| S-EPMC5155485 | biostudies-literature