Ontology highlight
ABSTRACT:
SUBMITTER: Leger S
PROVIDER: S-EPMC5643429 | biostudies-literature | 2017 Oct
REPOSITORIES: biostudies-literature
Leger Stefan S Zwanenburg Alex A Pilz Karoline K Lohaus Fabian F Linge Annett A Zöphel Klaus K Kotzerke Jörg J Schreiber Andreas A Tinhofer Inge I Budach Volker V Sak Ali A Stuschke Martin M Balermpas Panagiotis P Rödel Claus C Ganswindt Ute U Belka Claus C Pigorsch Steffi S Combs Stephanie E SE Mönnich David D Zips Daniel D Krause Mechthild M Baumann Michael M Troost Esther G C EGC Löck Steffen S Richter Christian C
Scientific reports 20171016 1
Radiomics applies machine learning algorithms to quantitative imaging data to characterise the tumour phenotype and predict clinical outcome. For the development of radiomics risk models, a variety of different algorithms is available and it is not clear which one gives optimal results. Therefore, we assessed the performance of 11 machine learning algorithms combined with 12 feature selection methods by the concordance index (C-Index), to predict loco-regional tumour control (LRC) and overall su ...[more]