Hyperglycemia exacerbates downregulation of dynamin-like protein 1 in ischemic cerebral injury.
Ontology highlight
ABSTRACT: Ischemic stroke is one of the leading causes of adult disability and death. Hyperglycemia is associated with an increased risk of stroke and poor outcomes after brain injury. Dynamin-like protein I (DLP-1) regulates mitochondrial fission and promotes mitochondrial dynamics. Neurodegenerative diseases are associated with mitochondrial dysfunction, and the downregulation of DLP-1 has been previously identified in a stroke animal model. Here, we investigated the changes in DLP-1 protein expression in an animal model of focal cerebral ischemia with induced hyperglycemia. Streptozotocin (40 mg/kg) was intraperitoneally injected into male rats to induce hyperglycemia, and middle cerebral artery occlusion (MCAO) was surgically induced 4 weeks after streptozotocin treatment. Brain tissue was isolated 24 hours after MCAO, and cerebral cortex samples were used for this study. Proteomics revealed a decrease in DLP-1 expression in MCAO animals when compared with controls, and this downregulation was more prominent in MCAO animals with hyperglycemia. Reverse-transcription polymerase chain reaction and Western blot analyses confirmed that DLP-1 was significantly downregulated in MCAO-injured animals with hyperglycemia compared to those without hyperglycemia. The decrease in DLP-1 indicates mitochondrial morphological changes and dysfunction. Together, these results suggest that the severe decrease of DLP-1 seen after brain injury under hyperglycemic conditions may exacerbate the damage to the brain.
SUBMITTER: Park DJ
PROVIDER: S-EPMC5645597 | biostudies-literature | 2017 Sep
REPOSITORIES: biostudies-literature
ACCESS DATA