Unknown

Dataset Information

0

Dynamical effects on the magnetic properties of dithiazolyl bistable materials.


ABSTRACT: The magnetic properties of molecule-based magnets are commonly rationalized by considering only a single nuclear configuration of the system under study (usually an X-ray crystal structure). Here, by means of a computational study, we compare the results obtained using such a static approach with those obtained by explicitly accounting for thermal fluctuations, and uncover the serious limitations of the static perspective when dealing with magnetic crystals whose radicals undergo wide-amplitude motions. As a proof of concept, these limitations are illustrated for the magnetically bistable 1,3,5-trithia-2,4,6-triazapentalenyl (TTTA) material. For its high-temperature phase at 300 K, we show that nuclear dynamics induce large fluctuations in the magnetic exchange interactions (JAB) between spins (up to 1000% of the average value). These deviations result in a ∼20% difference between the 300 K magnetic susceptibility computed by explicitly considering the nuclear dynamics and that computed using the X-ray structure, the former being in better agreement with the experimental data. The unveiled strong coupling between JAB interactions and intermolecular vibrations reveals that considering JAB as a constant value at a given temperature (as always done in molecular magnetism) leads to a flawed description of the magnetism of TTTA. Instead, the physically relevant concept in this case is the statistical distribution of JAB values. The discovery that a single X-ray structure is not adequate enough to interpret the magnetic properties of TTTA is also expected to be decisive in other organic magnets with dominant exchange interactions propagating through labile π-π networks.

SUBMITTER: Vela S 

PROVIDER: S-EPMC5645919 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC7769606 | biostudies-literature
| S-EPMC6506446 | biostudies-literature
| S-EPMC6890638 | biostudies-literature
| S-EPMC9311234 | biostudies-literature
| S-EPMC6258308 | biostudies-literature
| S-EPMC6784405 | biostudies-literature
| S-EPMC2410069 | biostudies-literature
| S-EPMC5052630 | biostudies-literature
| S-EPMC4558572 | biostudies-literature
| S-EPMC6423021 | biostudies-literature