Project description:Xiaochangliang (XCL), located in the Nihewan Basin of North China, is a key archaeological locality for understanding the behavioural evolution of early humans. XCL dates to ca. 1.36 Ma, making it one of the earliest sites in Northeast Asia. Although XCL represents the first excavation of an Early Pleistocene site in the Nihewan Basin, identified and excavated in the 1970's, the lithic assemblages have never been published in full detail. Here we describe the lithic assemblages from XCL, providing information on stone tool reduction techniques and the influence of raw materials on artefact manufacture. The XCL hominins used both bipolar and freehand reduction techniques to manufacture small flakes, some of which show retouch. Bipolar reduction methods at XCL were used more frequently than previously recognized. Comparison of XCL with other Early Pleistocene sites in the Nihewan Basin indicates the variable use of bipolar and freehand reduction methods, thereby indicating a flexible approach in the utilization of raw materials. The stone tools from XCL and the Nihewan sites are classifiable as Mode I lithic assemblages, readily distinguished from bifacial industries manufactured by hominins in Eastern Asia by ca. 800 ka.
Project description:The Early Pleistocene archaeological evidence from the fluvio-lacustrine sequence of the Nihewan Basin (North China) offers an excellent opportunity to explore early human evolution and behavior in a temperate setting in East Asia, following the earliest 'Out of Africa'. Here we present the first comprehensive study of the Feiliang (FL) site, with emphasis on the archaeological sequence, site integrity, and stone artifact assemblages. Magnetostratigraphic dating results show that early humans occupied the site ca. 1.2 Ma. Archaeological deposits were buried rapidly in primary context within shallow lake margin deposits, with only minor post-depositional disturbance from relatively low energy hydraulic forces. The FL lithic assemblage is characterized by a core and flake, Oldowan-like or Mode 1 technology, with a low degree of standardization, expedient knapping techniques, and casually retouched flakes. The bone assemblage suggests that hominin occupation of the FL site was in an open habitat of temperate grassland with areas of steppe and water. The main features of the FL assemblage are discussed in the context of the early Pleistocene archaeology of Nihewan, for which an assessment of current and future research is also presented.
Project description:The Xujiayao-Houjiayao site in Nihewan Basin is among the most important Paleolithic sites in China for having provided a rich collection of hominin and mammalian fossils and lithic artifacts. Based on biostratigraphical correlation and exploratory results from a variety of dating methods, the site has been widely accepted as early Upper Pleistocene in time. However, more recent paleomagnetic analyses assigned a much older age of ?500 ka (thousand years). This paper reports the application of 26Al/10Be burial dating as an independent check. Two quartz samples from a lower cultural horizon give a weighted mean age of 0.24 ± 0.05 Ma (million years, 1?). The site is thus younger than 340 ka at 95% confidence, which is at variance with the previous paleomagnetic results. On the other hand, our result suggests an age of older than 140 ka for the site's lower cultural deposits, which is consistent with recent post-infrared infrared stimulated luminescence (pIR-IRSL) dating at 160-220 ka.
Project description:New geochemical data from the Malawi Rift (Chiwondo Beds, Karonga Basin) fill a major spatial gap in our knowledge of hominin adaptations on a continental scale. Oxygen (?18O), carbon (?13C), and clumped (?47) isotope data on paleosols, hominins, and selected fauna elucidate an unexpected diversity in the Pleistocene hominin diet in the various habitats of the East African Rift System (EARS). Food sources of early Homo and Paranthropus thriving in relatively cool and wet wooded savanna ecosystems along the western shore of paleolake Malawi contained a large fraction of C3 plant material. Complementary water consumption reconstructions suggest that ca. 2.4 Ma, early Homo (Homo rudolfensis) and Paranthropus (Paranthropus boisei) remained rather stationary near freshwater sources along the lake margins. Time-equivalent Paranthropus aethiopicus from the Eastern Rift further north in the EARS consumed a higher fraction of C4 resources, an adaptation that grew more pronounced with increasing openness of the savanna setting after 2 Ma, while Homo maintained a high versatility. However, southern African Paranthropus robustus had, similar to the Malawi Rift individuals, C3-dominated feeding strategies throughout the Early Pleistocene. Collectively, the stable isotope and faunal data presented here document that early Homo and Paranthropus were dietary opportunists and able to cope with a wide range of paleohabitats, which clearly demonstrates their high behavioral flexibility in the African Early Pleistocene.
Project description:Until recently, our understanding of the evolution of human growth and development derived from studies of fossil juveniles that employed extant populations for both age determination and comparison. This circular approach has led to considerable debate about the human-like and ape-like affinities of fossil hominins. Teeth are invaluable for understanding maturation as age at death can be directly assessed from dental microstructure, and dental development has been shown to correlate with life history across primates broadly. We employ non-destructive synchrotron imaging to characterize incremental development, molar emergence, and age at death in more than 20 Australopithecus anamensis, Australopithecus africanus, Paranthropus robustus and South African early Homo juveniles. Long-period line periodicities range from at least 6-12 days (possibly 5-13 days), and do not support the hypothesis that australopiths have lower mean values than extant or fossil Homo. Crown formation times of australopith and early Homo postcanine teeth fall below or at the low end of extant human values; Paranthropus robustus dentitions have the shortest formation times. Pliocene and early Pleistocene hominins show remarkable variation, and previous reports of age at death that employ a narrow range of estimated long-period line periodicities, cuspal enamel thicknesses, or initiation ages are likely to be in error. New chronological ages for SK 62 and StW 151 are several months younger than previous histological estimates, while Sts 24 is more than one year older. Extant human standards overestimate age at death in hominins predating Homo sapiens, and should not be applied to other fossil taxa. We urge caution when inferring life history as aspects of dental development in Pliocene and early Pleistocene fossils are distinct from modern humans and African apes, and recent work has challenged the predictive power of primate-wide associations between hominoid first molar emergence and certain life history variables.
Project description:Diet is a major driver of hominin evolution, but most of the geochemical evidence relies on carbon isotopes (?13C). Here, we report enamel stable calcium isotope (?44/42Ca) values against ?13C values for several hominins and co-existing primates in the Turkana Basin area, circa 4 to 2?Ma. Australopithecus anamensis clusters with mammal browsers, Kenyanthropus platyops is distinct from A. anamensis in foraging into more open environments and the coexisting Theropithecus brumpti encompasses both the grazer and omnivore/carnivore domains. Early Homo is remarkable for its wide distribution in ?44/42Ca values, possibly reflecting omnivorous and opportunistic preferences. Paranthropus boisei is uniquely distributed in the ?13C versus ?44/42Ca iso-space being distinct from all other hominins from the Turkana Basin area as well as from the co-existing Theropithecus oswaldi. Several hypotheses are explored to discuss the unique ?44/42Ca values of Paranthropus boisei including significant differences observed with ?44/42Ca values recently reported for P. robustus from South Africa, questioning the monophyly of this genus.
Project description:The successful occupation of the eastern Eurasian Steppe in the Late Pleistocene improved cultural connections between western Eurasia and East Asia. We document multiple waves of lithic technological transmission between the eastern Eurasian Steppe and northern China during 50–11 cal. ka BP. These waves are apparent in the sequential appearance of three techno-complexes in northern China: (1) the Mousterian techno-complex, (2) the blade techno-complex mixed with Mousterian elements, (3) and the microlithized blade techno-complex. These lithic techno-complexes were transmitted under different paleoenvironmental conditions along different pathways through the eastern Eurasian Steppe. The Mousterian techno-complex and the blade techno-complex mixed with Mousterian elements were only dispersed in the north and west peripheries of northern China (50–33 cal. ka BP). We argue that these techno-complexes failed to penetrate into the hinterland of northern China because they were not well suited to local geographical conditions. In contrast, the microlithized blade technology which diffused from the eastern Eurasian Steppe was locally modified into a Microblade techno-complex which was highly suited to local environmental conditions, and proliferated across the hinterland of northern China (28/27-11 cal. ka BP). The subsequent spread of microblade technology over vast regions of Mongolia and Siberia indicates that the Pleistocene inhabitants of northern China not only adopted and modified technologies from their neighbors in the Eurasian Steppe, but these modified variants were subsequently transmitted back into the Eurasian Steppe. These episodes of technological transmission indicate complicated patterns of population dispersal and technological interaction across northern China and the eastern Eurasian Steppe.
Project description:Scholars have debated the taxonomic identity of isolated primate teeth from the Asian Pleistocene for over a century, which is complicated by morphological and metric convergence between orangutan (Pongo) and hominin (Homo) molariform teeth. Like Homo erectus, Pongo once showed considerable dental variation and a wide distribution throughout mainland and insular Asia. In order to clarify the utility of isolated dental remains to document the presence of hominins during Asian prehistory, we examined enamel thickness, enamel-dentine junction shape, and crown development in 33 molars from G. H. R. von Koenigswald's Chinese Apothecary collection (11 Sinanthropus officinalis [= Homo erectus], 21 "Hemanthropus peii," and 1 "Hemanthropus peii" or Pongo) and 7 molars from Sangiran dome (either Homo erectus or Pongo). All fossil teeth were imaged with non-destructive conventional and/or synchrotron micro-computed tomography. These were compared to H. erectus teeth from Zhoukoudian, Sangiran and Trinil, and a large comparative sample of fossil Pongo, recent Pongo, and recent human teeth. We find that Homo and Pongo molars overlap substantially in relative enamel thickness; molar enamel-dentine junction shape is more distinctive, with Pongo showing relatively shorter dentine horns and wider crowns than Homo. Long-period line periodicity values are significantly greater in Pongo than in H. erectus, leading to longer crown formation times in the former. Most of the sample originally assigned to S. officinalis and H. erectus shows greater affinity to Pongo than to the hominin comparative sample. Moreover, enamel thickness, enamel-dentine junction shape, and a long-period line periodicity value in the "Hemanthropus peii" sample are indistinguishable from fossil Pongo. These results underscore the need for additional recovery and study of associated dentitions prior to erecting new taxa from isolated teeth.
Project description:Paleogenomic research has shown that modern humans, Neanderthals, and their most recent common ancestor have displayed less genetic diversity than living great apes. The traditional interpretation that low levels of genetic diversity in modern humans resulted from a relatively recent demographic bottleneck cannot account for similarly low levels of genetic diversity in Middle Pleistocene hominins. A more parsimonious hypothesis proposes that the effective population size of the human lineage has been low for more than 500,000 years, but the mechanism responsible for suppressing genetic diversity in Pleistocene hominin populations without similarly affecting that of their hominoid contemporaries remains unknown. Here we use agent-based simulation to study the effect of culturally mediated migration on neutral genetic diversity in structured populations. We show that, in populations structured by culturally mediated migration, selection can suppress neutral genetic diversity over thousands of generations, even in the absence of bottlenecks or expansions in census population size. In other words, selection could have suppressed the effective population size of Pleistocene hominins for as long as the degree of cultural similarity between regionally differentiated groups played an important role in mediating intraspecific gene flow.
Project description:Collaborative hunting by complex social groups is a hallmark of large dogs (Mammalia: Carnivora: Canidae), whose teeth also tend to be hypercarnivorous, specialized toward increased cutting edges for meat consumption and robust p4-m1 complex for cracking bone. The deep history of canid pack hunting is, however, obscure because behavioral evidence is rarely preserved in fossils. Dated to the Early Pleistocene (>1.2 Ma), Canis chihliensis from the Nihewan Basin of northern China is one of the earliest canines to feature a large body size and hypercarnivorous dentition. We present the first known record of dental infection in C. chihliensis, likely inflicted by processing hard food, such as bone. Another individual also suffered a displaced fracture of its tibia and, despite such an incapacitating injury, survived the trauma to heal. The long period required for healing the compound fracture is consistent with social hunting and family care (food-sharing) although alternative explanations exist. Comparison with abundant paleopathological records of the putatively pack-hunting Late Pleistocene dire wolf, Canis dirus, at the Rancho La Brea asphalt seeps in southern California, U.S.A., suggests similarity in feeding behavior and sociality between Chinese and American Canis across space and time. Pack hunting in Canis may be traced back to the Early Pleistocene, well before the appearance of modern wolves, but additional evidence is needed for confirmation.