Unknown

Dataset Information

0

Activation of Bvg-Repressed Genes in Bordetella pertussis by RisA Requires Cross Talk from Noncooperonic Histidine Kinase RisK.


ABSTRACT: The two-component response regulator RisA, encoded by open reading frame BP3554 in the Bordetella pertussis Tohama I genomic sequence, is a known activator of vrg genes, a set of genes whose expression is increased under the same environmental conditions (known as modulation) that result in repression of the bvgAS virulence regulon. Here we demonstrate that RisA is phosphorylated in vivo and that RisA phosphorylation is required for activation of vrg genes. An adjacent histidine kinase gene, risS, is truncated by frameshift mutation in B. pertussis but not in Bordetella bronchiseptica or Bordetella parapertussis Neither deletion of risS' or bvgAS nor phenotypic modulation with MgSO4 affected levels of phosphorylated RisA (RisA?P) in B. pertussis However, RisA phosphorylation did require the histidine kinase encoded by BP3223, here named RisK (cognate histidine kinase of RisA). RisK was also required for expression of the vrg genes. This requirement could be obviated by the introduction of the phosphorylation-mimicking RisAD60E mutant, indicating that an active conformation of RisA, but not phosphorylation per se, is crucial for vrg activation. Interestingly, expression of vrg genes is still modulated by MgSO4 in cells harboring the RisAD60E mutation, suggesting that the activated RisA senses additional signals to control vrg expression in response to environmental stimuli.IMPORTANCE In B. pertussis, the BvgAS two-component system activates the expression of virulence genes by binding of BvgA?P to their promoters. Expression of the reciprocally regulated vrg genes requires RisA and is also repressed by the Bvg-activated BvgR. RisA is an OmpR-like response regulator, but RisA phosphorylation was not expected because the gene for its presumed, cooperonic, histidine kinase is inactivated by mutation. In this study, we demonstrate phosphorylation of RisA in vivo by a noncooperonic histidine kinase. We also show that RisA phosphorylation is necessary but not sufficient for vrg activation but, importantly, is not affected by BvgAS status. Instead, we propose that vrg expression is controlled by BvgAS through its regulation of BvgR, a cyclic di-GMP (c-di-GMP) phosphodiesterase.

SUBMITTER: Chen Q 

PROVIDER: S-EPMC5648863 | biostudies-literature | 2017 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Activation of Bvg-Repressed Genes in Bordetella pertussis by RisA Requires Cross Talk from Noncooperonic Histidine Kinase RisK.

Chen Qing Q   Ng Victoria V   Warfel Jason M JM   Merkel Tod J TJ   Stibitz Scott S  

Journal of bacteriology 20171017 22


The two-component response regulator RisA, encoded by open reading frame BP3554 in the <i>Bordetella pertussis</i> Tohama I genomic sequence, is a known activator of <i>vrg</i> genes, a set of genes whose expression is increased under the same environmental conditions (known as modulation) that result in repression of the <i>bvgAS</i> virulence regulon. Here we demonstrate that RisA is phosphorylated <i>in vivo</i> and that RisA phosphorylation is required for activation of <i>vrg</i> genes. An  ...[more]

Similar Datasets

| S-EPMC5020355 | biostudies-literature
2016-08-20 | GSE77754 | GEO
| S-EPMC108471 | biostudies-literature
| S-EPMC97367 | biostudies-literature
| S-EPMC6153668 | biostudies-literature
2016-08-20 | E-GEOD-77754 | biostudies-arrayexpress
| S-EPMC5426589 | biostudies-literature
| S-EPMC11019879 | biostudies-literature
| S-EPMC4136822 | biostudies-literature
| S-EPMC176660 | biostudies-other