Unknown

Dataset Information

0

MiR-150 Inhibits Cell Growth In Vitro and In Vivo by Restraining the RAB11A/WNT/?-Catenin Pathway in Thyroid Cancer.


ABSTRACT: BACKGROUND Emerging evidence has shown that downregulation or upregulation of microRNAs (miRNAs) plays an important role in the development and progression of thyroid cancer (TC). However, the potential role of miR-150 and its biological function in TC remains largely unclear. MATERIAL AND METHODS Real-time polymerase chain reaction (RT-qPCR) was employed to detect the expression level of miR-150 and RAB11A in human TC tissue and human normal thyroid tissue. MTT assay, colony formation assay, flow cytometry cell cycle, and apoptosis assay were used to investigate the role of miR-150 and RAB11A on the malignant phenotypes in vitro. Nude mouse xenograft assay and western blot assay was used to verify the function of miR-150 in vivo. Western blot assay and immunofluorescence assay were used to detect the activation of WNT/?-catenin pathway mediated by miR-150 and RAB11A. EGFP reporter assay, RT-qPCR assay, and western blot assay were used to validate the regulation relationship. RESULTS This study demonstrated that miR-150 expression in human TC tissues was markedly downregulated. Moreover, overexpression of miR-150 markedly inhibited cell proliferation via inducing the cell cycle arrest and promoting cell apoptosis by directly targeting RAB11A in vitro and suppressing tumor growth in vivo. However, overexpression of RAB11A promoted cell malignant phenotypes. In addition, miR-150 restrained the RAB11A mediated WNT/?-catenin activation in TC cells. CONCLUSIONS miR-150 may function as a suppressor gene in TC cells by inhibiting the RAB11A/WNT/?-catenin pathway.

SUBMITTER: Bai D 

PROVIDER: S-EPMC5649516 | biostudies-literature | 2017 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

MiR-150 Inhibits Cell Growth In Vitro and In Vivo by Restraining the RAB11A/WNT/β-Catenin Pathway in Thyroid Cancer.

Bai Dongfang D   Sun Haipeng H   Wang Xiaodong X   Lou Hongliang H   Zhang Jian J   Wang Xiaohong X   Jiang Ling L  

Medical science monitor : international medical journal of experimental and clinical research 20171012


BACKGROUND Emerging evidence has shown that downregulation or upregulation of microRNAs (miRNAs) plays an important role in the development and progression of thyroid cancer (TC). However, the potential role of miR-150 and its biological function in TC remains largely unclear. MATERIAL AND METHODS Real-time polymerase chain reaction (RT-qPCR) was employed to detect the expression level of miR-150 and RAB11A in human TC tissue and human normal thyroid tissue. MTT assay, colony formation assay, fl  ...[more]

Similar Datasets

| S-EPMC6529773 | biostudies-literature
| S-EPMC2906770 | biostudies-literature
| S-EPMC9259643 | biostudies-literature
| S-EPMC4767937 | biostudies-literature
| S-EPMC7694907 | biostudies-literature
| S-EPMC7051256 | biostudies-literature
| S-EPMC5609988 | biostudies-literature
| S-EPMC9302537 | biostudies-literature
| S-EPMC8579447 | biostudies-literature
| S-EPMC8100484 | biostudies-literature