Unknown

Dataset Information

0

A joint modeling and estimation method for multivariate longitudinal data with mixed types of responses to analyze physical activity data generated by accelerometers.


ABSTRACT: A mixed effect model is proposed to jointly analyze multivariate longitudinal data with continuous, proportion, count, and binary responses. The association of the variables is modeled through the correlation of random effects. We use a quasi-likelihood type approximation for nonlinear variables and transform the proposed model into a multivariate linear mixed model framework for estimation and inference. Via an extension to the EM approach, an efficient algorithm is developed to fit the model. The method is applied to physical activity data, which uses a wearable accelerometer device to measure daily movement and energy expenditure information. Our approach is also evaluated by a simulation study.

SUBMITTER: Li H 

PROVIDER: S-EPMC5656438 | biostudies-literature | 2017 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

A joint modeling and estimation method for multivariate longitudinal data with mixed types of responses to analyze physical activity data generated by accelerometers.

Li Haocheng H   Zhang Yukun Y   Carroll Raymond J RJ   Keadle Sarah Kozey SK   Sampson Joshua N JN   Matthews Charles E CE  

Statistics in medicine 20170807 25


A mixed effect model is proposed to jointly analyze multivariate longitudinal data with continuous, proportion, count, and binary responses. The association of the variables is modeled through the correlation of random effects. We use a quasi-likelihood type approximation for nonlinear variables and transform the proposed model into a multivariate linear mixed model framework for estimation and inference. Via an extension to the EM approach, an efficient algorithm is developed to fit the model.  ...[more]

Similar Datasets

| S-EPMC5799029 | biostudies-literature
| S-EPMC6294314 | biostudies-literature
| S-EPMC10825672 | biostudies-literature
| S-EPMC8449434 | biostudies-literature
| S-EPMC6240282 | biostudies-literature
| S-EPMC9313904 | biostudies-literature
| S-EPMC9652799 | biostudies-literature
| S-EPMC10119900 | biostudies-literature
| S-EPMC4143749 | biostudies-literature
| S-EPMC3947121 | biostudies-literature