Within-day protein distribution does not influence body composition responses during weight loss in resistance-training adults who are overweight.
Ontology highlight
ABSTRACT: Background: Emerging research suggests that redistributing total protein intake from 1 high-protein meal/d to multiple moderately high-protein meals improves 24-h muscle protein synthesis. Over time, this may promote positive changes in body composition.Objective: We sought to assess the effects of within-day protein intake distribution on changes in body composition during dietary energy restriction and resistance training.Design: In a randomized parallel-design study, 41 men and women [mean ± SEM age: 35 ± 2 y; body mass index (in kg/m2): 31.5 ± 0.5] consumed an energy-restricted diet (750 kcal/d below the requirement) for 16 wk while performing resistance training 3 d/wk. Subjects consumed 90 g protein/d (1.0 ± 0.03 g · kg-1 · d-1, 125% of the Recommended Dietary Allowance, at intervention week 1) in either a skewed (10 g at breakfast, 20 g at lunch, and 60 g at dinner; n = 20) or even (30 g each at breakfast, lunch, and dinner; n = 21) distribution pattern. Body composition was measured pre- and postintervention.Results: Over time, whole-body mass (least-squares mean ± SE: -7.9 ± 0.6 kg), whole-body lean mass (-1.0 ± 0.2 kg), whole-body fat mass (-6.9 ± 0.5 kg), appendicular lean mass (-0.7 ± 0.1 kg), and appendicular fat mass (-2.6 ± 0.2 kg) each decreased. The midthigh muscle area (0 ± 1 cm2) did not change over time, whereas the midcalf muscle area decreased (-3 ± 1 cm2). Within-day protein distribution did not differentially affect these body-composition responses.Conclusion: The effectiveness of dietary energy restriction combined with resistance training to improve body composition is not influenced by the within-day distribution of protein when adequate total protein is consumed. This trial was registered at clinicaltrials.gov as NCT02066948.
SUBMITTER: Hudson JL
PROVIDER: S-EPMC5657287 | biostudies-literature | 2017 Nov
REPOSITORIES: biostudies-literature
ACCESS DATA