Unknown

Dataset Information

0

Exploring the Development of Ground-State Destabilization and Transition-State Stabilization in Two Directed Evolution Paths of Kemp Eliminases.


ABSTRACT: Computer-aided enzyme design presents a major challenge since in most cases it has not resulted in an impressive catalytic power. The reasons for the problems with computational design include the use of nonquantitative approaches, but they may also reflect other difficulties that are not completely obvious. Thus, it is very useful to try to learn from the trend in directed evolution experiments. Here we explore the nature of the refinement of Kemp eliminases by directed evolution, trying to gain an understanding of related requirements from computational design. The observed trend in the directed evolution refinement of KE07 and HG3 are reproduced, showing that in the case of KE07 the directed evolution leads to ground-state destabilization, whereas in the case of HG3 the directed evolution leads to transition-state stabilization. The nature of the different paths of the directed evolution is examined and discussed. The present study seems to indicate that computer-aided enzyme design may require more than calculations of the effect of single mutations and should be extended to calculations of the effect of simultaneous multiple mutations (that make a few residues preorganized effectively). However, the analysis of two known evolution paths can still be accomplished using the relevant sequences and structures. Thus, by comparing two directed evolution paths of Kemp eliminases we reached the important conclusion that the more effective path leads to transition-state stabilization.

SUBMITTER: Jindal G 

PROVIDER: S-EPMC5658032 | biostudies-literature | 2017 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Exploring the Development of Ground-State Destabilization and Transition-State Stabilization in Two Directed Evolution Paths of Kemp Eliminases.

Jindal Garima G   Ramachandran Balajee B   Bora Ram Prasad RP   Warshel Arieh A  

ACS catalysis 20170330 5


Computer-aided enzyme design presents a major challenge since in most cases it has not resulted in an impressive catalytic power. The reasons for the problems with computational design include the use of nonquantitative approaches, but they may also reflect other difficulties that are not completely obvious. Thus, it is very useful to try to learn from the trend in directed evolution experiments. Here we explore the nature of the refinement of Kemp eliminases by directed evolution, trying to gai  ...[more]

Similar Datasets

| S-EPMC6735427 | biostudies-literature
| S-EPMC3425665 | biostudies-literature
| S-EPMC4267393 | biostudies-literature
| S-EPMC3101270 | biostudies-literature
| S-EPMC3889864 | biostudies-literature
| S-EPMC6726543 | biostudies-literature
| S-EPMC3651043 | biostudies-literature
| S-EPMC3699461 | biostudies-literature
| S-EPMC2997618 | biostudies-literature
| S-EPMC7735706 | biostudies-literature