Activation of ?2-AMPK Suppresses Ribosome Biogenesis and Protects Against Myocardial Ischemia/Reperfusion Injury.
Ontology highlight
ABSTRACT: RATIONALE:AMPK (AMP-activated protein kinase) is a heterotrimeric protein that plays an important role in energy homeostasis and cardioprotection. Two isoforms of each subunit are expressed in the heart, but the isoform-specific function of AMPK remains unclear. OBJECTIVE:We sought to determine the role of ?2-AMPK in cardiac stress response using bioengineered cell lines and mouse models containing either isoform of the ?-subunit in the heart. METHODS AND RESULTS:We found that ?2 but not ?1 or ?3 subunit translocated into nucleus on AMPK activation. Nuclear accumulation of AMPK complexes containing ?2-subunit phosphorylated and inactivated RNA Pol I (polymerase I)-associated transcription factor TIF-IA at Ser-635, precluding the assembly of transcription initiation complexes for rDNA. The subsequent downregulation of pre-rRNA level led to attenuated endoplasmic reticulum (ER) stress and cell death. Deleting ?2-AMPK led to increases in pre-rRNA level, ER stress markers, and cell death during glucose deprivation, which could be rescued by inhibition of rRNA processing or ER stress. To study the function of ?2-AMPK in the heart, we generated a mouse model with cardiac-specific deletion of ?2-AMPK (cardiac knockout [cKO]). Although the total AMPK activity was unaltered in cKO hearts because of upregulation of ?1-AMPK, the lack of ?2-AMPK sensitizes the heart to myocardial ischemia/reperfusion injury. The cKO failed to suppress pre-rRNA level during ischemia/reperfusion and showed a greater infarct size. Conversely, cardiac-specific overexpression of ?2-AMPK decreased ribosome biosynthesis and ER stress during ischemia/reperfusion insult, and the infarct size was reduced. CONCLUSIONS:The ?2-AMPK translocates into the nucleus to suppress pre-rRNA transcription and ribosome biosynthesis during stress, thus ameliorating ER stress and cell death. Increased ?2-AMPK activity is required to protect against ischemia/reperfusion injury. Our study reveals an isoform-specific function of ?2-AMPK in modulating ribosome biosynthesis, cell survival, and cardioprotection.
SUBMITTER: Cao Y
PROVIDER: S-EPMC5659937 | biostudies-literature | 2017 Oct
REPOSITORIES: biostudies-literature
ACCESS DATA