A random acceleration model of individual animal movement allowing for diffusive, superdiffusive and superballistic regimes.
Ontology highlight
ABSTRACT: Patterns of individual animal movement attracted considerable attention over the last two decades. In particular, question as to whether animal movement is predominantly diffusive or superdiffusive has been a focus of discussion and controversy. We consider this problem using a theory of stochastic motion based on the Langevin equation with non-Wiener stochastic forcing that originates in animal's response to environmental noise. We show that diffusive and superdiffusive types of motion are inherent parts of the same general movement process that arises as interplay between the force exerted by animals (essentially, by animal's muscles) and the environmental drag. The movement is superballistic with the mean square displacement growing with time as [Formula: see text] at the beginning and eventually slowing down to the diffusive spread [Formula: see text]. We show that the duration of the superballistic and superdiffusive stages can be long depending on the properties of the environmental noise and the intensity of drag. Our findings demonstrate theoretically how the movement pattern that includes diffusive and superdiffusive/superballistic motion arises naturally as a result of the interplay between the dissipative properties of the environment and the animal's biological traits such as the body mass, typical movement velocity and the typical duration of uninterrupted movement.
SUBMITTER: Tilles PFC
PROVIDER: S-EPMC5662607 | biostudies-literature | 2017 Oct
REPOSITORIES: biostudies-literature
ACCESS DATA