Unknown

Dataset Information

0

Mediterranean California's water use future under multiple scenarios of developed and agricultural land use change.


ABSTRACT: With growing demand and highly variable inter-annual water supplies, California's water use future is fraught with uncertainty. Climate change projections, anticipated population growth, and continued agricultural intensification, will likely stress existing water supplies in coming decades. Using a state-and-transition simulation modeling approach, we examine a broad suite of spatially explicit future land use scenarios and their associated county-level water use demand out to 2062. We examined a range of potential water demand futures sampled from a 20-year record of historical (1992-2012) data to develop a suite of potential future land change scenarios, including low/high change scenarios for urbanization and agriculture as well as "lowest of the low" and "highest of the high" anthropogenic use. Future water demand decreased 8.3 billion cubic meters (Bm3) in the lowest of the low scenario and decreased 0.8 Bm3 in the low agriculture scenario. The greatest increased water demand was projected for the highest of the high land use scenario (+9.4 Bm3), high agricultural expansion (+4.6 Bm3), and high urbanization (+2.1 Bm3) scenarios. Overall, these scenarios show agricultural land use decisions will likely drive future demand more than increasing municipal and industrial uses, yet improved efficiencies across all sectors could lead to potential water use savings. Results provide water managers with information on diverging land use and water use futures, based on historical, observed land change trends and water use histories.

SUBMITTER: Wilson TS 

PROVIDER: S-EPMC5663427 | biostudies-literature | 2017

REPOSITORIES: biostudies-literature

altmetric image

Publications

Mediterranean California's water use future under multiple scenarios of developed and agricultural land use change.

Wilson Tamara S TS   Sleeter Benjamin M BM   Cameron D Richard DR  

PloS one 20171031 10


With growing demand and highly variable inter-annual water supplies, California's water use future is fraught with uncertainty. Climate change projections, anticipated population growth, and continued agricultural intensification, will likely stress existing water supplies in coming decades. Using a state-and-transition simulation modeling approach, we examine a broad suite of spatially explicit future land use scenarios and their associated county-level water use demand out to 2062. We examined  ...[more]

Similar Datasets

| S-EPMC5554984 | biostudies-literature
| S-EPMC6054018 | biostudies-literature
| PRJEB22056 | ENA
| S-EPMC8519118 | biostudies-literature
| S-EPMC6030534 | biostudies-literature
| S-EPMC7880460 | biostudies-literature
| S-EPMC6434982 | biostudies-literature
| S-EPMC8931142 | biostudies-literature
| S-EPMC10300668 | biostudies-literature
| S-EPMC3817586 | biostudies-literature